Skip to main content
Log in

Molecular interactions between Pluronic F127 and the peptide tritrpticin in aqueous solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Triblock copolymers, such as Pluronic F127 (F127), are pharmaceutically important amphiphilic compounds that self-assemble in aqueous solution either as discrete or entangled micelles, depending on their concentration and temperature, which may function as drug delivery vehicle. Herein, we have synthesized the antimicrobial peptide tritrpticin (TRP3), a tryptophan (Trp)- and arginine (Arg)-rich peptide, sequence VRRFPWWWPFLRR, with a broad spectrum of action against bacteria and fungi, to investigate its interaction with F127 in dilute aqueous solution, by using fluorescence and circular dichroism spectroscopies, differential scanning calorimetry, dynamic light scattering, and zeta potential methods. The combined results indicate that at 50 μmol L−1 TRP3 and up to 700 μmol L−1 F127, these compounds interact together to form F127-bound complexes with the peptide at low concentrations, and immobilized TPR3-containing micelle-like structures at higher concentrations. The F127-TRP3 complexes are stable with varying hydrodynamic size depending on the relative amount of F127, which can be tuned smaller by adjusting the copolymer concentration to values suitable for drug delivery applications in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zasloff M (2002) Antimicrobial peptide of multicellular organisms. Nature 415:389–395

    Article  CAS  Google Scholar 

  2. Mishra B, Reiling S, Zarena D, Wang G (2017) Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 38:87–96

    Article  CAS  Google Scholar 

  3. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    Article  CAS  Google Scholar 

  4. Chan DI, Prenner JJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanism of action. Biochim Biophys Acta 1758:1184–1202

    Article  CAS  Google Scholar 

  5. Shagaghi N, Palombo EA, Clayton AH, Bhave M (2016) Archetypal tryptophan-rich antimicrobial peptides: properties and applications. World J Microbiol Biotechnol 32:31

    Article  Google Scholar 

  6. Sitaram N (2006) Antimicrobial peptides with unusual amino acid compositions and unusual structures. Curr Med Chem 13:679–696

    Article  CAS  Google Scholar 

  7. Cirioni O, Giacometti A, Silvestri C, Della Vittoria A, Licci A, Riva A, Scalise G (2006) In vitro activities of tritrpticin alone and in combination with other antimicrobial agents against Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:3923–3925

    Article  CAS  Google Scholar 

  8. Yang ST, Shin SY, Kim YC, Kim Y, Hahm KS, Kim JI (2002) Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem Biophys Res Commun 296:1044–1050

    Article  CAS  Google Scholar 

  9. Ghiselli R, Cirioni O, Giacometti A, Mocchegiani F, Orlando F, Silvestri C, Licci A, Della Vitoria A, Scalise G, Saba V (2006) The cathelicidin-derived tritrpticin enhances the efficacy of ertapenem in experimental rat models of septic shock. Shock 26:195–200

    Article  CAS  Google Scholar 

  10. Schibli DJ, Hwang PM, Vogel HJ (1999) Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane-bound peptide fold. Biochemistry 38:16749–16755

    Article  CAS  Google Scholar 

  11. Andrushchenko VV, Vogel HJ, Prenner EJ (2006) Solvent-dependent structure of two tryptophan-rich antimicrobial peptides and their analogs studies by FTIR and CD spectroscopy. Biochim Biophys Acta 1758:1596–1608

    Article  CAS  Google Scholar 

  12. Santos TL, Moraes A, Nakaie CR, Almeida FC, Schreier S, Valente AP (2016) Structural and dynamic insights of the interaction between tritrpticin and micelles: an NMR study. Biophys J 111:2676–2688

    Article  CAS  Google Scholar 

  13. Nagpal S, Gupta V, Kaur KJ, Salunke DM (1999) Structure-function analysis of tritrypticin, and antibacterial peptide of innate immune origin. J Biol Chem 274:23296–23304

    Article  CAS  Google Scholar 

  14. Schibli DJ, Epand RF, Vogel HJ, Epand RM (2002) Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochem Cell Biol 80:667–677

    Article  CAS  Google Scholar 

  15. Yang ST, Shin SY, Hahm KS, Kim JI (2006) Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides. Biochim Biophys Acta 1758:1580–1586

    Article  CAS  Google Scholar 

  16. Salay LC, Procopio J, Oliveira E, Nakaie CR, Schreier S (2004) Ion channel-like activity of the antimicrobial peptide tritrpticin in planar lipid bilayers. FEBS Lett 565:171–175

    Article  CAS  Google Scholar 

  17. Salay LC, Ferreira M, Oliveira ON, Nakaie CR, Schreier S (2012) Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers. Colloids Surf B: Biointerfaces 100:95–102

    Article  CAS  Google Scholar 

  18. Bozelli JC, Sasahara ET, Pinto MRS, Nakaie CR, Schreier S (2012) Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes. Chem Phys Lipids 165:365–373

    Article  CAS  Google Scholar 

  19. Yang ST, Shin SH, Hahm KS, Kim JI (2006) Design of perfect symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Int J Antimicrob Agents 27:325–330

    Article  CAS  Google Scholar 

  20. Salay LC, Petri DF, Nakaie CR, Schreier S (2015) Adsorption of the antimicrobial peptide tritrpticin onto solid and liquid surfaces: ion-specific effects. Biophys Chem 207:128–134

    Article  CAS  Google Scholar 

  21. Akash MSH, Rehman K (2015) Recent progress in biomedical applications of Pluronic (PF127): pharmaceutical perspectives. J Control Release 209:120–138

    Article  CAS  Google Scholar 

  22. Kabanov AV, Batrakova EV, Melik-Nubarov NS, Fedoseev NA, Dorodnich TY, Alakhov VY, Chekhonin VP, Nazarova IR, Kabanov VA (1992) A new class of drug carriers: micelles of poly(oxyethylene)–poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain. J Control Release 22:141–158

    Article  CAS  Google Scholar 

  23. Yokoyama M, Satoh A, Sakurai Y, Okano T, Matsumura Y, Kakizoe T, Kataoka K (1998) Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release 55:219–229

    Article  CAS  Google Scholar 

  24. Kim SY, Ha JC, Lee YM (2000) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(ε-caprolactone) (PCL) amphiphilic block copolymeric nanospheres: II. Thermo-responsive drug behaviors. J Control Release 65: 345–358

  25. Zhang T, Zhou S, Liu Y, Luo X, Di D, Song Y, Liu X, Deng Y (2017) Polysialic acid and Pluronic F127 mixed polymeric micelles of docetaxel as new approach for enhanced antitumor efficacy. Drug Dev Ind Pharm 26:1–9

    Google Scholar 

  26. Yeom DW, Chae BR, Son HY, Kim JH, Chae JS, Song SH, Oh D, Choi YW (2017) Enhanced oral bioavailability of valsartan using a polymer-based supersaturable self-microemulsifying drug delivery system. Int J Nanomedicine 12:3533–3545

    Article  Google Scholar 

  27. Mahmoud MO, Aboud HM, Hassan AH, Ali AA, Johnston TP (2017) Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats. J Control Release 254:10–22

    Article  CAS  Google Scholar 

  28. Chiappetta DA, Hocht C, Opezzo JA, Sosnik A (2013) Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV. Nanomedicine 8:223–237

    Article  CAS  Google Scholar 

  29. Al Khateb K, Ozhmukhametova EK, Mussin MN, Seilkhanov SK, Rakhypbekov TK, Lau WM, Khutoryanskiy VV (2016) In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int J Pharm 502:70–79

    Article  Google Scholar 

  30. Atherton E, Sheppard RC (1989) Solid phase peptide synthesis: a practical approach, I.R.L. Press at Oxford University Press, Oxford

  31. King DS, Fields CG, Fields GB (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int J Pep Prot Res 36:255–266

    Article  CAS  Google Scholar 

  32. Lopes A, Edwards K, Feitosa E (2008) Extruded vesicles of dioctadecyldimethylammonium bromide and chloride investigated by light scattering and cryogenic transmission electron microscopy. J Colloid Interface Sci 322:582–588

    Article  CAS  Google Scholar 

  33. Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2005) Measurement interpretation of electrokinetic phenomena. Pure Appl Chem 77:1753–1805

    CAS  Google Scholar 

  34. Bandula R, Vasilescu M (2011) Imidazole derivatives as absorption probes for Pluronics core-shell aggregates micropolarity investigation. J Appl Spectrosc 78:209–217

    Article  CAS  Google Scholar 

  35. Lin Y, Alexandridis P (2002) Temperature-dependent adsorption of Pluronic F127 block copolymers onto carbon black particles dispersed in aqueous media. J Phys Chem B 106:10834–10844

    Article  CAS  Google Scholar 

  36. Romani AP, Marquezin CA, Ito AS (2010) Fluorescence spectroscopy of small peptides interacting with microheterogeneous micelles. Int J Pharm 383:154–156

    Article  CAS  Google Scholar 

  37. Romani AP, Marquezin CA, Soares AE, Ito AS (2006) Study of the interaction between Apis mellifera venom and micro-heterogeneous systems. J Fluoresc 16:423–430

    Article  CAS  Google Scholar 

  38. Zhu WL, Lan H, Park Y, Yang ST, Kim JI, Park IS, You HJ, Lee JS, Park YS, Kim Y, Hanm KS, Shin SY (2006) Effects of Pro→peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide. Biochemistry 45: 13007–13017

  39. Wood RW (1994) Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins. Eur Biophys J 23:253–262

    Article  Google Scholar 

  40. Feitosa E, Winnik FM (2010) Interaction between Pluronic F127 and dioctadecyldimethylammonium bromide (DODAB) vesicles studied by differential scanning calorimetry. Langmuir 26:17852–17857

    Article  CAS  Google Scholar 

  41. Johnson CM (2013) Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 531:100–109

    Article  CAS  Google Scholar 

  42. Alexandridis P, Holzwarth JF (1997) Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (poloxamer). Langmuir 13:6074–6082

    Article  CAS  Google Scholar 

  43. Chiu MH, Prenner EJ (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci 3:39–59

    Article  CAS  Google Scholar 

  44. Andrushchenko VV, Vogel HJ, Prenner EJ (2007) Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry. Biochim Biophys Acta 1768:2447–2458

    Article  CAS  Google Scholar 

  45. Attwood D, Collett JH, Tait CJ (1985) The micellar properties of the poly(oxyethylene)-poly(oxypropylene) copolymer Pluronic F127 in water and electrolyte solution. Int J Pharm 26:25–33

    Article  CAS  Google Scholar 

  46. Basak R, Bandyopadhyay R (2013) Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature and pH. Langmuir 29:4350–4356

    Article  CAS  Google Scholar 

  47. Manaia EB, Abuçafy MP, Chiari-Andréo BG, Silva BL, Oshiro Junior JA, Chiavacci LA (2017) Physicochemical characterization of drug nanocarriers. Int J Nanomedicine 12:4991–5011

    Article  Google Scholar 

Download references

Acknowledgments

E.A.P and R.S.S. thank FAPESB for the master’s degree fellowship. M.L. and J.P.P. thank CAPES for the PhD’s fellowship. P.R.S.S thanks FAPESP for the PhD’s fellowship. N.S.M.H was a CAPES post-doctoral fellow. E.F. and E.M.C. are CNPq research fellows.

Funding

We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (grant number 473885/2012-3) and Fundação de Amparo à Pesquisa do Estado da Bahia - FAPESB (grant number 6769/2011) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz C. Salay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salay, L.C., Prazeres, E.A., Marín Huachaca, N.S. et al. Molecular interactions between Pluronic F127 and the peptide tritrpticin in aqueous solution. Colloid Polym Sci 296, 809–817 (2018). https://doi.org/10.1007/s00396-018-4304-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4304-0

Keywords

Navigation