Skip to main content
Log in

Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

It has often been assumed that the role of aromatic side chains in the far-ultraviolet region of protein circular dichroism (CD) is negligible. However, some proteins have positive CD bands in the 220–230 nm region which are almost certainly due to aromatic side chains. The contributions to the CD of interactions between tryptophan side chains and the nearest neighbor peptide groups have been studied, focusing on the indole Bb transition which occurs near 220 nm. Calculations on idealized peptide conformations show that the CD depends strongly on both backbone and side-chain conformation. Because of the low symmetry of indole, rotation about the CβCγ bond (dihedral angle χ2) by 180° generally leads to large changes in the CD, often causing the Bb band to reverse sign. When side-chain conformational preferences are taken into account, there is no strong bias for either positive or negative Bb rotational strengths. The observation that simple tryptophan derivatives such as N-acetyl-L-tryptophan methylamide have positive CD near 220 nm implies either that these derivatives prefer the αR region over the β region, or that there is little preference for χ2 < 180° over χ2 > 180°. Nearest-neighbor-only calculations on individual tryptophans in 15 globular proteins also reveal a small bias toward positive Bb bands. Rotational strengths of the Bb transition for some conformations can be as large as ∼ 1.0 Debye-Bohr magnetons in magnitude, corresponding to maximum molar ellipticities greater than 105 degcm2/dmol. Although a substantial amount of cancellation occurs in most of the examples considered here, such CD contributions could be significant, especially in proteins of low helix content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad-Zapatero C, Griffith JP, Sussman JL, Rossmann M (1987) Refined crystal structure of dogfish M4 apo-lactate dehydrogenase. J Mol Biol 198:455–467

    Google Scholar 

  • Abola EE, Bernstein FC, Bryant HH, Koetzle TF, Weng J (1987) Protein data bank, in: Allen FH, Bergerhoff G, Sievers R (eds) Crystallographic databases — Information content, software systems, scientific applications, Data Commission, International Union of Crystallography, Bonn Cambridge Chester, pp 107–132

    Google Scholar 

  • Alden RA, Birktoft JJ, Kraut J, Robertus JD, Wright CS (1971) Atomic coordinates for subtilisin BPN' (or Novo). Biochem Biophys Res Commun 45:337–344

    Google Scholar 

  • Arnold GE, Day L, Dunker AK (1992) Tryptophan contributions to an unusual circular dichroism spectrum of the fd phage. Biochemistry 31:7948–7956

    Google Scholar 

  • Auer HE (1973) Far-ultraviolet absorption and circular dichroism spectra of L-tryptophan and some derivatives. J Am Chem Soc 95:3003–3011

    Google Scholar 

  • Banner PW Bloomer AC, Petsko GA, Phillips DC, Wilson IA (1976) Atomic coordinates for triose phosphate isomerase from chicken muscle. Biochem Biophys Res Commun 72:146–155

    Google Scholar 

  • Barlow DJ, Thornton JM (1988) Helix geometry in proteins. J Mol Biol 201:601–619

    Google Scholar 

  • Bayley PM (1973) The analysis of circular dichroism of biomolecules. Progr Biophys Mol Biol 2:1–76

    Google Scholar 

  • Bayley PM, Nielsen EB, Schellman JA (1969) The rotatory properties of molecules containing two peptide groups: Theory. J Phys Chem 73:228–243

    Google Scholar 

  • Benedetti E, Morelli G, Nemethy G, Scheraga JA (1983) Statistical and energetic analysis of side-chain conformations in oligopeptides. Int J Pept Protein Res 22:1–15

    Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Google Scholar 

  • Bhat TN, Sasisekharan V, Vijayan M (1979) An analysis of side-chain conformation in proteins. Int J Pept Protein Res 13:170–184

    Google Scholar 

  • Blake CCF, Geisow MJ, Oatley SJ, Rerat B, Rerat C (1978) Structure of prealbumin, secondary, tertiary and quartemary interactions determined by Fourier refinement at 1.8 Å. J Mol Biol 121:339–356

    Google Scholar 

  • Bolotina IA, Lugauskas VYu (1986) Determination of the secondary structure of proteins from the circular dichroism spectra. IV. Consideration of the contribution of aromatic amino acid residues to the circular dichroism spectra of proteins in the peptide region. Mol Biol (Engl. Transl.) 19:1154–1166

    Google Scholar 

  • Brahms S, Brahms J (1980) Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol 138:149–178

    Google Scholar 

  • Callis PR (1991) Molecular orbital theory of the 1Lb and 1La states of indole. J Chem Phys 95:4230–4240

    Google Scholar 

  • Cameron DL, Tu AT (1977) Characterization of myotoxin a from the venom of prairie rattlesnake (Crotalus viridus viridus). Biochemistry 16:2546–2553

    Google Scholar 

  • Chen AK, Woody RW (1971) A theoretical study of the optical rotatory properties of poly-L-tyrosine. J Am Chem Soc 93:29–37

    Google Scholar 

  • Cohen GH, Silverton EW Davies DR (1981) Refined crystal structure of γ-chymotrypsin at 1.9 Å resolution. Comparison with other pancreatic serine proteases. J Mol Biol 148:449–479

    Google Scholar 

  • Cosani A, Peggion E, Verdini AS, Terbojevich M (1968) Far ultraviolet optical rotatory properties of poly-L-tryptophan. Biopolymers 6:963–971

    Google Scholar 

  • Day LA (1973) Circular dichroism and ultraviolet absorption of a deoxyribonucleic acid binding protein of filamentous bacteriophage. Biochemistry 12:5329–5339

    Google Scholar 

  • Discipio RG, Hugh TE (1982) Circular dichroism studies of human factor H. A regulatory component of the complement system. Biochim Biophys Acta 709:58–64

    Google Scholar 

  • Drenth J, Kalk KH, Swen HM (1976) Binding of chloromethylketone substrate analogues to crystalline papain. Biochemistry 15:3731–3738

    Google Scholar 

  • Dufton MJ, Hider RC (1983) Conformational properties of the neurotoxins and cytotoxins isolated from elapid snake venoms. CRC Crit Rev Biochem 14:113–171

    Google Scholar 

  • Goux WJ, Hooker TM, Jr (1980) Chiroptical properties of proteins. 1. Near-ultraviolet circular dichroism of ribonuclease S. J Am Chem Soc 102:7080–7087

    Google Scholar 

  • Goux WJ, Kadesch TR, Hooker TM, Jr (1976) Contribution of side-chain chromophores to the optical activity of proteins: Model compound studies. IV The indole chromophore of yohimbinic acid. Biopolymers 15:977–997

    Google Scholar 

  • Green NM, Melamed MD (1966) Optical rotatory dispersion, circular dichroism and far-ultraviolet spectra of avidin and streptavidin. Biochem J 100:614–621

    Google Scholar 

  • Grognet JM, Ménez A, Drake A, Hayashi K, Morrison IEG, Hider RC (1988) Circular dichroic spectra of elapid cardiotoxins. Eur J Biochem 172:383–388

    Google Scholar 

  • Gruen LC, Tao Z-J, Kortt AA (1984) Stability and physicochemical properties of a trypsin inhibitor from winged bean seed (Psophocarpus tetragonolobus (L) DC). Biochim Biophys Acta 791:285–293

    Google Scholar 

  • Hansen AE (1967) Correlation effects in the calculation of ordinary and rotatory intensities. Mol Phys 13:425–431

    Google Scholar 

  • Hennessey JP, Jr, Johnson WC, Jr (1981) Information content in the circular dichroism of proteins. Biochemistry 20:1085–1094

    Google Scholar 

  • Herzberg O, Sussman JL (1983) Protein model building by the use of a constrained-restrained least-squares procedure. J Appl Crystallogr 16:144–150

    Google Scholar 

  • Hider RC, Drake AF, Tamiya N (1988) An analysis of the 225–230 nm CD band of elapid toxins. Biopolymers 27:113–122

    Google Scholar 

  • Holmes MA, Matthews BW (1982) Structure of thermolysin refined at 1.6 Å resolution. J Mol Biol 160:623–639

    Google Scholar 

  • Ikeda K, Hamaguchi K, Yamamoto M, Ikenaka T (1968) Circular dichroism and optical rotatory dispersion of trypsin inhibitors. J Biochem 63:521–531

    Google Scholar 

  • IUPAC-IUB Commission on Biochemical Nomenclature (1976) Abbreviations and symbols for the description of the conformation of polypeptide chains. Tentative rules (1969) in: Fasman GD (ed) Handbook of Biochemistry and Molecular Biology, 3rd edn, vol. 1. CRC Press, Cleveland, pp 59–74

    Google Scholar 

  • Janin J, Wodak S, Levitt M, Maigret B (1978) Conformation of amino acid side chains in proteins. J Mol Biol 125:357–386

    Google Scholar 

  • Johnson WC, Jr (1988) Secondary structure of proteins through circular dichroism spectroscopy. Annu Rev Biophys Biophys Chem 17:145–166

    Google Scholar 

  • Kahn PC (1978) The interpretation of near-ultraviolet circular dichroism. Methods Enzymol 61:339–378

    Google Scholar 

  • Karle IL, Britts K, Gum P (1964) Crystal and molecular structure of 3-indolylacetic acid. Acta Crystallogr 17:496–499

    Google Scholar 

  • Kéry V, Bystrícký S, Ševčik J, Zelinka J (1986) Circular dichroism of the guanyloribonuclease Sa and its complex with guanosine-3′-phosphate. Biochim Biophys Acta 869:75–80

    Google Scholar 

  • Kuwajima K, Garvey EP, Finn BE, Matthews CR, Sugai S (1991) Transient intermediates in the folding of dihydrofolate reductase as detected by far-ultraviolet circular dichroism spectroscopy. Biochemistry 30:7693–7703

    Google Scholar 

  • Ladner RC, Heidner EG, Perutz MF (1977) The structure of horse methaemoglobin at 2.0 Å resolution. J Mol Biol 114:385–414

    Google Scholar 

  • Lee NS, Brewer HB, Jr, Osborne JC, Jr (1983) β2-glycoprotein I. Molecular properties of an unusual apolipoprotein, apoliprotein H. J Biol Chem 258:4765–4770

    Google Scholar 

  • Lipkind GM, Popov EM (1971) Conformational states of amino acid residues in proteins. Side chains. Mol Biol (Engl. Transl.) 5:532–542

    Google Scholar 

  • Maeda H, Shiraishi H, Onodera S, Ishida N (1973) Conformation of antibiotic protein, neocarzinostatin, studied by plane polarized infrared spectroscopy, circular dichroism and optical rotatory dispersion. Int J Pept Protein Res 5:19–26

    Google Scholar 

  • Manavalan P, Johnson WC, Jr (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem 167:76–85

    Google Scholar 

  • Mandal K, Bose SK, Chakrabarti B, Siezen RJ (1985) Structure and stability of γ-crystallins, I. Spectroscopic evaluation of secondary and tertiary structure in solution. Biochim Biophys Acta 832:156–164

    Google Scholar 

  • McGregor MJ, Islam SA, Sternberg MJE (1987) Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J Mol Biol 198:295–310

    Google Scholar 

  • McGuire RF, Vanderkooi G, Momany FA, Ingwall RT, Crippens GM, Lotan N, Tuttle RW, Kashuba KL, Scheraga HA (1971) Determination of intermolecular potentials from crystal data. II. Crystal packing with applications to poly (amino acids). Macromolecules 4:112–124

    Google Scholar 

  • Menez A, Bonet F, Tamiya N, Fromageot P (1976) Conformational changes in two neurotoxic proteins from snake venoms. Biochim Biophys Acta 453:121–132

    Google Scholar 

  • Momany FA, McGuire RF, Burgess AW, Scheraga HA (1975) Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional proteins for the naturally occurring amino acids. J Phys Chem 79: 2361–2381

    Google Scholar 

  • Moras D, Olsen KW, Sabesan MN, Buehner M, Ford GC, Rossmann MG (1975) Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 250:9137–9162

    Google Scholar 

  • Morgan WT, Smith A (1984) Domain structure of rabbit hemopexin. Isolation and characterization of a heme-binding glycopeptide. J Biol Chem 259:12001–12006

    Google Scholar 

  • Murrell JN, Harget AJ (1972) Semi-empirical molecular orbital theory of molecules. Wiley, London

    Google Scholar 

  • Nishimoto K, Forster LS (1965) SCF calculations of aromatic hydrocarbons. The variable β approximation. Theor Chim Acta (Berlin) 3:407–417

    Google Scholar 

  • Nishimoto K, Forster LS (1966) SCFMO calculations of heteroatomic systems with the variable β approximation. I. Heteroatomic molecules containing nitrogen or oxygen atoms. Theor Chim Acta (Berlin) 4:155–165

    Google Scholar 

  • Ohmori D (1984) Characterization and reconstitution of Pseudomonas ovalis ferredoxin. Biochim Biophys Acta 790:15–21

    Google Scholar 

  • Ooi T, Scott RA, Vanderkooi G, Scheraga HA (1967) Conformational analysis of macromolecules. IV. Helical structures of poly-L-alanine, poly-L-valine, poly-β-methyl-L-aspartate, poly-γ-methyl-L-glutamate, and poly-L-tyrosine. J Chem Phys 46:4410–4426

    Google Scholar 

  • Österlund E, Eronen I, Osterlund K, Vuento M (1985) Secondary structure of human plasma fibronectin: Conformational change induced by calf alveolar heparan sulfates. Biochemistry 24:2661–2667

    Google Scholar 

  • Peggion E, Cosani A, Verdini AS, Del Pra A, Mammi M (1968) Conformational studies on poly-L-tryptophan: Circular dichroism and X-ray diffraction studies. Biopolymers 6:1477–1486

    Google Scholar 

  • Perczel A, Hollósi M, Tusnády G, Fasman GD (1991) Convex constraints analysis: A natural deconvolution of circular dichroism curves of proteins. Prot Eng 4:669–679

    Google Scholar 

  • Perczel A, Park K, Fasman GD (1992) Deconvolution of the circular dichroism spectra of proteins: The circular dichroism spectra of the antiparallel β-sheet in proteins. Proteins: Struct Funct Genet 13:57–69

    Google Scholar 

  • Philips LA, Levy DH (1986a) The rotationally resolved electronic spectrum of indole in the gas phase. J Chem Phys 85:1327–1332

    Google Scholar 

  • Philips LA, Levy DH (1986b) Determination of the transition moment and the geometry of tryptamine by rotationally resolved electronic spectroscopy. J Phys Chem 90:4921–4923

    Google Scholar 

  • Platt JR (1949) Classification of spectra of cata-condensed hydrocarbons. J Chem Phys 17:484–495

    Google Scholar 

  • Ponder JW, Richards FM (1987) Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol 193:775–791

    Google Scholar 

  • Ponnuswamy PK, Sasisekharan V (1971) Studies on the conformation of amino acids. V. Conformation of amino acids with δ-atoms. Int J Protein Res 3:9–18

    Google Scholar 

  • Przysiecki CT, Meyer TE, Cusanovich MA (1985) Circular dichroism and redox properties of high redox potential ferredoxins. Biochemistry 24:2542–2549

    Google Scholar 

  • Richardson JS, Getzoff ED, Richardson DC (1978) The β-bulge: A common small unit of nonrepetitive protein structure. Proc Natl Acad Sci, USA 75:2574–2578

    Google Scholar 

  • Ridley J, Zerner M (1973) An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines. Theor Chim Acta (Berlin) 32:111–134

    Google Scholar 

  • Rodríguez-Romero A, Arreguin B, Hernández-Arana A (1989) Unusual far-ultraviolet circular dichroism of wheat germ agglutinin and hevein originated from cystine residues. Biochim Biophys Acta 998:21–24

    Google Scholar 

  • Sasisekharan V, Ponnuswamy PK (1971) Studies on the conformation of amino acids. X. Conformations of norvalyl, leucyl and aromatic side groups in a dipeptide unit. Biopolymers 10:583–592

    Google Scholar 

  • Sawyer L, Shotton DM, Campbell JW Wendell PL, Muirhead H, Watson HC, Diamond R, Ladner RC (1978) The atom structure of crystalline porcine pancreatic elastase at 2.5 Å resolution. Comparison with the structure of α-chymotrypsin. J Mol Biol 118:137–208

    Google Scholar 

  • Schellman JA (1968) Symmetry rules for optical rotation. Ace Chem Res 1:144–151

    Google Scholar 

  • Sears DW, Beychok S (1973) Circular dichroism, in: Leach SJ (ed) Physical principles and techniques of protein chemistry, Part C. Academic Press, New York, pp 445–593

    Google Scholar 

  • Shiraki M (1969) Circular dichroism and optical rotatory dispersion of N-acetylaromatic amino acid amides as models for proteins. Sci Pap Colt Educ Univ Tokyo 19:151–173

    Google Scholar 

  • Siano DB, Metzler DE (1969) Band shapes of the electronic spectra of complex molecules. J Chem Phys 51:1856–1861

    Google Scholar 

  • Smith WW, Burnett RM, Darling GD, Ludwig ML (1977) Structure of the semiquinone form of flavodoxin from Clostridium MP. Extension of 1.8 Å resolution and some comparisons with the oxidized state. J Mol Biol 117:195–225

    Google Scholar 

  • Sreerama N, Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209:32–44

    Google Scholar 

  • Strickland EH (1974) Aromatic contributions to circular dichroism spectra of proteins. CRC Crit Rev Biochem 2:113–175

    Google Scholar 

  • Takano T, Dickerson RE (1980) Redox conformation changes in refined tuna cytochrome c. Proc Natl Acad Sci, USA 77:6371–6375

    Google Scholar 

  • Timasheff SN, Bernardi G (1970) Studies on acid deoxyribonuclease: VII. Conformation of three nucleases in solution. Arch Biochem Biophys 141:53–58

    Google Scholar 

  • Tinoco I, Jr (1962) Theoretical aspects of optical activity. Part two: Polymers Adv Chem Phys 4:113–160

    Google Scholar 

  • van Stokkum IHM, Spoelder HJW Bloemendal M, van Grondelle R, Groen FCA (1990) Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal Biochem 191:110–118

    Google Scholar 

  • Vuilleumier S, Sancho J, Loawenthal R, Fersht AR (1993) Circular dichroism studies of barnase and its mutants: Characterization of the contribution of aromatic side chains. Biochemistry 32:10303–10313

    Google Scholar 

  • Watenpaugh KD, Sicker LC, Jensen LH (1980) Crystallographic refinement of rubredoxin at 1.2 Å resolution. J Mol Biol 138:615–633

    Google Scholar 

  • Watson HC (1969) The stereochemistry of the protein myoglobin. Progr Stereochem 4:299–333

    Google Scholar 

  • Wawrzynczak EJ, Drake AF, Thorpe PE (1988) Circular dichroism of isolated ricin A- and B-chains. Biophys Chem 31:301–305

    Google Scholar 

  • Weigang OE, Jr (1966) Vibrational structuring in optical activity. Dev Appl Spectrosc 5:259–281

    Google Scholar 

  • Woody RW (1968) Improved calculation of the nπ* rotational strength in polypeptides. J Chem Phys 49:4797–4806

    Google Scholar 

  • Woody RW (1978) Aromatic side-chain contributions to the far-ultraviolet circular dichroism of peptides and proteins. Biopolymers 17:1451–1467

    Google Scholar 

  • Woody RW (1994) Circular dichroism. Methods Ezymol (in press)

  • Yamamoto Y, Tanaka J (1972) Polarized absorption spectra of crystals of indole and its related compounds. Bull Chem Soc Jpn 45:1362–1366

    Google Scholar 

  • Yang CC, Chang CC, Hayashi K, Suzuki T, Ikeda K, Hamaguchi K (1968) Optical rotatory dispersion and circular dichroism of cobrotoxin. Biochim Biophys Acta 168:373–376

    Google Scholar 

  • Yang JT, Wu C-SC, Martinez HM (1986) Calculation of protein conformation from circular dichroism. Methods Enzymol 130: 208–269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woody, R.W. Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins. Eur Biophys J 23, 253–262 (1994). https://doi.org/10.1007/BF00213575

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00213575

Key words

Navigation