Skip to main content

Advertisement

Log in

SAIL: a new conserved anti-fibrotic lncRNA in the heart

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) account for a large proportion of genomic transcripts and are critical regulators in various cardiac diseases. Though lncRNAs have been reported to participate in the process of diverse cardiac diseases, the contribution of lncRNAs in cardiac fibrosis remains to be fully elucidated. Here, we identified a novel anti-fibrotic lncRNA, SAIL (scaffold attachment factor B interacting lncRNA). SAIL was reduced in cardiac fibrotic tissue and activated cardiac fibroblasts. Gain- and loss-of-function studies showed that knockdown of SAIL promoted proliferation and collagen production of cardiac fibroblasts with or without TGF-β1 (transforming growth factor beta1) treatment, while overexpression of SAIL did the opposite. In mouse cardiac fibrosis induced by myocardial infarction, knockdown of SAIL exacerbated, whereas overexpression of SAIL alleviated cardiac fibrosis. Mechanically, SAIL inhibited the fibrotic process by directly binding with SAFB via 23 conserved nucleotide sequences, which in turn blocked the access of SAFB to RNA pol II (RNA polymerase II) and reduced the transcription of fibrosis-related genes. Intriguingly, the human conserved fragment of SAIL (hSAIL) significantly suppressed the proliferation and collagen production of human cardiac fibroblasts. Our findings demonstrate that SAIL regulates cardiac fibrosis by regulating SAFB-mediated transcription of fibrotic related genes. Both SAIL and SAFB hold the potential to become novel therapeutic targets for cardiac fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anderson KM, Anderson DM, McAnally JR, Shelton JM, Bassel-Duby R, Olson EN (2016) Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 539:433–436. https://doi.org/10.1038/nature20128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bacmeister L, Schwarzl M, Warnke S, Stoffers B, Blankenberg S, Westermann D, Lindner D (2019) Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 114:19. https://doi.org/10.1007/s00395-019-0722-5

    Article  CAS  PubMed  Google Scholar 

  3. Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117:568–575. https://doi.org/10.1172/JCI31044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Brooks HL, Lindsey ML (2018) Guidelines for authors and reviewers on antibody use in physiology studies. Am J Physiol Heart Circ Physiol 314:H724–H732. https://doi.org/10.1152/ajpheart.00512.2017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cai B, Ma W, Ding F, Zhang L, Huang Q, Wang X, Hua B, Xu J, Li J, Bi C, Guo S, Yang F, Han Z, Li Y, Yan G, Yu Y, Bao Z, Yu M, Li F, Tian Y, Pan Z, Yang B (2018) The long noncoding RNA CAREL controls cardiac regeneration. J Am Coll Cardiol 72:534–550. https://doi.org/10.1016/j.jacc.2018.04.085

    Article  PubMed  Google Scholar 

  6. Cai B, Zhang Y, Zhao Y, Wang J, Li T, Zhang Y, Jiang Y, Jin X, Xue G, Li P, Sun Y, Huang Q, Zhang X, Su W, Yang Y, Sun Y, Shi L, Li X, Lu Y, Yang B, Pan Z (2019) Long noncoding RNA-DACH1 (Dachshund homolog 1) regulates cardiac function by inhibiting SERCA2a (sarcoplasmic reticulum calcium ATPase 2a). Hypertension 74:833–842. https://doi.org/10.1161/HYPERTENSIONAHA.119.12998

    Article  CAS  PubMed  Google Scholar 

  7. Creemers EE, van Rooij E (2016) Function and therapeutic potential of noncoding RNAs in cardiac fibrosis. Circ Res 118:108–118. https://doi.org/10.1161/CIRCRESAHA.115.305242

    Article  CAS  PubMed  Google Scholar 

  8. Debril MB, Dubuquoy L, Feige JN, Wahli W, Desvergne B, Auwerx J, Gelman L (2005) Scaffold attachment factor B1 directly interacts with nuclear receptors in living cells and represses transcriptional activity. J Mol Endocrinol 35:503–517. https://doi.org/10.1677/jme.1.01856

    Article  CAS  PubMed  Google Scholar 

  9. Feng Y, Xu W, Zhang W, Wang W, Liu T, Zhou X (2019) LncRNA DCRF regulates cardiomyocyte autophagy by targeting miR-551b-5p in diabetic cardiomyopathy. Theranostics 9:4558–4566. https://doi.org/10.7150/thno.31052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hammerich-Hille S, Bardout VJ, Hilsenbeck SG, Osborne CK, Oesterreich S (2010) Low SAFB levels are associated with worse outcome in breast cancer patients. Breast Cancer Res Treat 121:503–509. https://doi.org/10.1007/s10549-008-0297-6

    Article  CAS  PubMed  Google Scholar 

  11. Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien H, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HV, Quertermous T, Chang CP (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106. https://doi.org/10.1038/nature13596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466:62–67. https://doi.org/10.1038/nature09130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hashimoto T, Matsuda K, Kawata M (2012) Scaffold attachment factor B (SAFB)1 and SAFB2 cooperatively inhibit the intranuclear mobility and function of ERalpha. J Cell Biochem 113:3039–3050. https://doi.org/10.1002/jcb.24182

    Article  CAS  PubMed  Google Scholar 

  14. Hong E, Best A, Gautrey H, Chin J, Razdan A, Curk T, Elliott DJ, Tyson-Capper AJ (2015) Unravelling the RNA-binding properties of SAFB proteins in breast cancer cells. Biomed Res Int 2015:395816. https://doi.org/10.1155/2015/395816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Huang R, Jin X, Gao Y, Yuan H, Wang F, Cao X (2019) DZNep inhibits Hif-1alpha and Wnt signalling molecules to attenuate the proliferation and invasion of BGC-823 gastric cancer cells. Oncol Lett 18:4308–4316. https://doi.org/10.3892/ol.2019.10769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Huo X, Ji L, Zhang Y, Lv P, Cao X, Wang Q, Yan Z, Dong S, Du D, Zhang F, Wei G, Liu Y, Wen B (2019) The nuclear matrix protein SAFB cooperates with major satellite RNAs to stabilize heterochromatin architecture partially through phase separation. Mol Cell. https://doi.org/10.1016/j.molcel.2019.10.001

    Article  PubMed  Google Scholar 

  17. Janicki JS, Brower GL (2002) The role of myocardial fibrillar collagen in ventricular remodeling and function. J Card Fail 8:S319-325. https://doi.org/10.1054/jcaf.2002.129260

    Article  CAS  PubMed  Google Scholar 

  18. Jiang F, Zhou X, Huang J (2016) Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy. PLoS ONE 11:e0152767. https://doi.org/10.1371/journal.pone.0152767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jiao HL, Ye YP, Yang RW, Sun HY, Wang SY, Wang YX, Xiao ZY, He LQ, Cai JJ, Wei WT, Chen YR, Gu CC, Cai YL, Hu YT, Lai QH, Qiu JF, Liang L, Cao GW, Liao WT, Ding YQ (2017) Downregulation of SAFB sustains the NF-kappaB pathway by targeting TAK1 during the progression of colorectal cancer. Clin Cancer Res 23:7108–7118. https://doi.org/10.1158/1078-0432.CCR-17-0747

    Article  CAS  PubMed  Google Scholar 

  20. Leisegang MS, Fork C, Josipovic I, Richter F, Preussner J, Hu J, Miller MJ, Epah JN, Hofmann P, Gunther S (2017) Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation 136:65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li X, Luo S, Zhang J, Yuan Y, Jiang W, Zhu H, Ding X, Zhan L, Wu H, Xie Y, Song R, Pan Z, Lu Y (2019) lncRNA H19 alleviated myocardial I/RI via suppressing miR-877-3p/Bcl-2-mediated mitochondrial apoptosis. Mol Ther Nucleic Acids 17:297–309. https://doi.org/10.1016/j.omtn.2019.05.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lin JS, Lai EM (2017) Protein-protein interactions: co-immunoprecipitation. Methods Mol Biol 1615:211–219. https://doi.org/10.1007/978-1-4939-7033-9_17

    Article  CAS  PubMed  Google Scholar 

  23. Lindsey ML, Bolli R, Canty JM Jr, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314:H812–H838. https://doi.org/10.1152/ajpheart.00335.2017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lindsey ML, Gray GA, Wood SK, Curran-Everett D (2018) Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 315:H303–H313. https://doi.org/10.1152/ajpheart.00309.2018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lindsey ML, Kassiri Z, Virag JAI, de Castro Bras LE, Scherrer-Crosbie M (2018) Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 314:H733–H752. https://doi.org/10.1152/ajpheart.00339.2017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Liu HW, Banerjee T, Guan X, Freitas MA, Parvin JD (2015) The chromatin scaffold protein SAFB1 localizes SUMO-1 to the promoters of ribosomal protein genes to facilitate transcription initiation and splicing. Nucleic Acids Res 43:3605–3613. https://doi.org/10.1093/nar/gkv246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65. https://doi.org/10.1093/cvr/cvw078

    Article  CAS  PubMed  Google Scholar 

  28. Ma L, Sun L, Jin X, Xiong SD, Wang JH (2018) Scaffold attachment factor B suppresses HIV-1 infection of CD4(+) T cells by preventing binding of RNA polymerase II to HIV-1’s long terminal repeat. J Biol Chem 293:12177–12185. https://doi.org/10.1074/jbc.RA118.002018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Marin-Bejar O, Huarte M (2015) RNA pulldown protocol for in vitro detection and identification of RNA-associated proteins. Methods Mol Biol 1206:87–95. https://doi.org/10.1007/978-1-4939-1369-5_8

    Article  CAS  PubMed  Google Scholar 

  30. Matsuda KI, Hashimoto T, Kawata M (2018) Intranuclear mobility of estrogen receptor: implication for transcriptional regulation. Acta Histochem Cytochem 51:129–136. https://doi.org/10.1267/ahc.18023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Micheletti R, Plaisance I, Abraham BJ, Sarre A, Ting CC, Alexanian M, Maric D, Maison D, Nemir M, Young RA, Schroen B, Gonzalez A, Ounzain S, Pedrazzini T (2017) The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aai9118

    Article  PubMed Central  PubMed  Google Scholar 

  32. Mukhopadhyay NK, Kim J, You S, Morello M, Hager MH, Huang WC, Ramachandran A, Yang J, Cinar B, Rubin MA, Adam RM, Oesterreich S, Di Vizio D, Freeman MR (2014) Scaffold attachment factor B1 regulates the androgen receptor in concert with the growth inhibitory kinase MST1 and the methyltransferase EZH2. Oncogene 33:3235–3245. https://doi.org/10.1038/onc.2013.294

    Article  CAS  PubMed  Google Scholar 

  33. Nayler O, Stratling W, Bourquin JP, Stagljar I, Lindemann L, Jasper H, Hartmann AM, Fackelmayer FO, Ullrich A, Stamm S (1998) SAF-B protein couples transcription and pre-mRNA splicing to SAR/MAR elements. Nucleic Acids Res 26:3542–3549. https://doi.org/10.1093/nar/26.15.3542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Norman M, Rivers C, Lee YB, Idris J, Uney J (2016) The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins. Biochem J 473:4271–4288. https://doi.org/10.1042/BCJ20160649

    Article  CAS  PubMed  Google Scholar 

  35. Oesterreich S, Lee AV, Sullivan TM, Samuel SK, Davie JR, Fuqua SA (1997) Novel nuclear matrix protein HET binds to and influences activity of the HSP27 promoter in human breast cancer cells. J Cell Biochem 67:275–286

    Article  CAS  PubMed  Google Scholar 

  36. Ounzain S, Micheletti R, Beckmann T, Schroen B, Alexanian M, Pezzuto I, Crippa S, Nemir M, Sarre A, Johnson R, Dauvillier J, Burdet F, Ibberson M, Guigo R, Xenarios I, Heymans S, Pedrazzini T (2015) Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J 36:353–368a. https://doi.org/10.1093/eurheartj/ehu180

    Article  CAS  PubMed  Google Scholar 

  37. Piccoli MT, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL, Garg A, Remke J, Zimmer K, Batkai S, Thum T (2017) Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121:575–583. https://doi.org/10.1161/CIRCRESAHA.117.310624

    Article  CAS  PubMed  Google Scholar 

  38. Ponnusamy M, Liu F, Zhang YH, Li RB, Zhai M, Liu F, Zhou LY, Liu CY, Yan KW, Dong YH, Wang M, Qian LL, Shan C, Xu S, Wang Q, Zhang YH, Li PF, Zhang J, Wang K (2019) Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139:2668–2684. https://doi.org/10.1161/CIRCULATIONAHA.118.035832

    Article  CAS  PubMed  Google Scholar 

  39. Qu X, Du Y, Shu Y, Gao M, Sun F, Luo S, Yang T, Zhan L, Yuan Y, Chu W (2017) MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 7:42657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schulz R, Agg B, Ferdinandy P (2018) Survival pathways in cardiac conditioning: individual data vs. meta-analyses. What do we learn? Basic Res Cardiol 113:4. https://doi.org/10.1007/s00395-017-0661-y

    Article  CAS  PubMed  Google Scholar 

  41. Shen S, Jiang H, Bei Y, Xiao J, Li X (2017) Long non-coding RNAs in cardiac remodeling. Cell Physiol Biochem 41:1830–1837. https://doi.org/10.1159/000471913

    Article  CAS  PubMed  Google Scholar 

  42. Sun L, Zhang Y, Zhang Y, Gu Y, Xuan L, Liu S, Zhao X, Wang N, Huang L, Huang Y, Zhang Y, Ren L, Wang Z, Lu Y, Yang B (2014) Expression profile of long non-coding RNAs in a mouse model of cardiac hypertrophy. Int J Cardiol 177:73–75. https://doi.org/10.1016/j.ijcard.2014.09.032

    Article  PubMed  Google Scholar 

  43. Tao H, Yang JJ, Hu W, Shi KH, Deng ZY, Li J (2016) Noncoding RNA as regulators of cardiac fibrosis: current insight and the road ahead. Pflugers Arch 468:1103–1111. https://doi.org/10.1007/s00424-016-1792-y

    Article  CAS  PubMed  Google Scholar 

  44. Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388. https://doi.org/10.1161/CIRCRESAHA.114.302476

    Article  CAS  PubMed  Google Scholar 

  45. Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139. https://doi.org/10.1038/nm.4179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wenfeng C, Cui L, Xuefeng Q, Dan Z, Xuelian W, Xiangru Y, Fulai C, Haihai L, Yong Z, Xin Z (2012) Arsenic-induced interstitial myocardial fibrosis reveals a new insight into drug-induced long QT syndrome. Cardiovasc Res 96:90–98

    Article  Google Scholar 

  47. Yamaguchi A, Takanashi K (2016) FUS interacts with nuclear matrix-associated protein SAFB1 as well as Matrin3 to regulate splicing and ligand-mediated transcription. Sci Rep 6:35195. https://doi.org/10.1038/srep35195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zhang Y, Jiao L, Sun L, Li Y, Gao Y, Xu C, Shao Y, Li M, Li C, Lu Y, Pan Z, Xuan L, Zhang Y, Li Q, Yang R, Zhuang Y, Zhang Y, Yang B (2018) LncRNA ZFAS1 as a SERCA2a inhibitor to cause intracellular Ca(2+) overload and contractile dysfunction in a mouse model of myocardial infarction. Circ Res 122:1354–1368. https://doi.org/10.1161/CIRCRESAHA.117.312117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zhou X, Sun F, Luo S, Zhao W, Yang T, Zhang G, Gao M, Lu R, Shu Y, Mu W, Zhuang Y, Ding F, Xu C, Lu Y (2017) Let-7a Is an antihypertrophic regulator in the heart via targeting calmodulin. Int J Biol Sci 13:22–31. https://doi.org/10.7150/ijbs.16298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zhu XH, Yuan YX, Rao SL, Wang P (2016) LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 20:3653–3660

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81872871, 82070283, 81530010 and 82073844).

Author information

Authors and Affiliations

Authors

Contributions

SJL, YJL, and ZWP designed the research. SJL and MYZ supervised all aspects of the research. XD, XD, SS, WDS, HWX, DYL, and JFZ performed cellular experiments. JXW, WQY, WH, XXH, and QZ conducted animal experiments. SJL, YJL, and ZWP wrote and finalized the manuscript.

Corresponding author

Correspondence to Zhenwei Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2980 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Zhang, M., Wu, H. et al. SAIL: a new conserved anti-fibrotic lncRNA in the heart. Basic Res Cardiol 116, 15 (2021). https://doi.org/10.1007/s00395-021-00854-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-021-00854-y

Keywords

Navigation