Basic Research in Cardiology

, 113:33 | Cite as

Local metabolic hypothesis is not sufficient to explain coronary autoregulatory behavior

  • Alexander M. Kiel
  • Adam G. Goodwill
  • Hana E. Baker
  • Gregory M. Dick
  • Johnathan D. TuneEmail author
Original Contribution


The local metabolic hypothesis proposes that myocardial oxygen tension determines the degree of autoregulation by increasing the production of vasodilator metabolites as perfusion pressure is reduced. Thus, normal physiologic levels of coronary venous PO2, an index of myocardial oxygenation, are proposed to be required for effective autoregulation. The present study challenged this hypothesis through determination of coronary responses to changes in coronary perfusion pressure (CPP 140–40 mmHg) in open-chest swine in the absence (n = 7) and presence of euvolemic hemodilution (~ 50% reduction in hematocrit), with (n = 5) and without (n = 6) infusion of dobutamine to augment MVO2. Coronary venous PO2 decreased over similar ranges (~ 28–15 mmHg) as CPP was lowered from 140 to 40 mmHg in each of the groups. However, coronary venous PO2 was not associated with changes in coronary blood flow (r = − 0.11; P = 0.29) or autoregulatory gain (r = − 0.29; P = 0.12). Coronary zero-flow pressure (Pzf) was measured in 20 mmHg increments and determined to be directly related to vascular resistance (r = 0.71; P < 0.001). Further analysis demonstrated that changes in coronary blood flow remained minimal at Pzf > 20 mmHg, but progressively increased as Pzf decreased below this threshold value (r = 0.68; P < 0.001). Coronary Pzf was also positively correlated with autoregulatory gain (r = 0.43; P = 0.001). These findings support that coronary autoregulatory behavior is predominantly dependent on an adequate degree of underlying vasomotor tone, independent of normal myocardial oxygen tension.


Coronary Autoregulation Zero-flow pressure Swine 



The authors wish to thank Joshua Sturek for expert technical assistance. This study was supported by the National Institutes of Health U01HL118738.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Alella A, Williams FL, Bolene-Williams C, Katz LN (1955) Interrelation between cardiac oxygen consumption and coronary blood flow. Am J Physiol 183:570–582. PubMedCrossRefGoogle Scholar
  2. 2.
    Aversano T, Klocke FJ, Mates RE, Canty JM Jr (1984) Preload-induced alterations in capacitance-free diastolic pressure–flow relationship. Am J Physiol 246:H410–H417. PubMedCrossRefGoogle Scholar
  3. 3.
    Bai XJ, Iwamoto T, Williams AG Jr, Fan WL, Downey HF (1994) Coronary pressure–flow autoregulation protects myocardium from pressure-induced changes in oxygen consumption. Am J Physiol 266:H2359–H2368. PubMedCrossRefGoogle Scholar
  4. 4.
    Bayliss WM (1902) On the local reactions of the arterial wall to changes of internal pressure. J Physiol 28:220–231. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bellamy RF (1978) Diastolic coronary artery pressure–flow relations in the dog. Circ Res 43:92–101. CrossRefPubMedGoogle Scholar
  6. 6.
    Bender SB, Berwick ZC, Laughlin MH, Tune JD (2011) Functional contribution of P2Y1 receptors to the control of coronary blood flow. J Appl Physiol 111:1744–1750. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Berne RM (1959) Cardiodynamics and the coronary circulation in hypothermia. Ann N Y Acad Sci 80:365–383. CrossRefPubMedGoogle Scholar
  8. 8.
    Berwick ZC, Moberly SP, Kohr MC, Morrical EB, Kurian MM, Dick GM, Tune JD (2012) Contribution of voltage-dependent K+ and Ca2+ channels to coronary pressure–flow autoregulation. Basic Res Cardiol 107:264. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cornelissen AJ, Dankelman J, VanBavel E, Spaan JA (2002) Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol 282:H2224–H2237. CrossRefPubMedGoogle Scholar
  10. 10.
    Cornelissen AJ, Dankelman J, VanBavel E, Stassen HG, Spaan JA (2000) Myogenic reactivity and resistance distribution in the coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol 278:H1490–H1499. CrossRefPubMedGoogle Scholar
  11. 11.
    Crystal GJ, El-Orbany M, Zhou X, Salem MR, Kim SJ (2008) Hemodilution does not alter the coronary vasodilating effects of endogenous or exogenous nitric oxide. Can J Anaesth 55:507–514. CrossRefPubMedGoogle Scholar
  12. 12.
    Davis MJ (1993) Myogenic response gradient in an arteriolar network. Am J Physiol 264:H2168–H2179. PubMedCrossRefGoogle Scholar
  13. 13.
    Dick GM, Namani R, Patel B, Kassab GS (2018) Role of coronary myogenic response in pressure–flow autoregulation in swine: a meta-analysis with coronary flow modeling. Front Physiol. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dole WP, Alexander GM, Campbell AB, Hixson EL, Bishop VS (1984) Interpretation and physiological significance of diastolic coronary artery pressure–flow relationships in the canine coronary bed. Circ Res 55:215–226. CrossRefPubMedGoogle Scholar
  15. 15.
    Dole WP, Bishop VS (1982) Influence of autoregulation and capacitance on diastolic coronary artery pressure–flow relationships in the dog. Circ Res 51:261–270. CrossRefPubMedGoogle Scholar
  16. 16.
    Dole WP, Nuno DW (1986) Myocardial oxygen tension determines the degree and pressure range of coronary autoregulation. Circ Res 59:202–215. CrossRefPubMedGoogle Scholar
  17. 17.
    Dole WP, Yamada N, Bishop VS, Olsson RA (1985) Role of adenosine in coronary blood flow regulation after reductions in perfusion pressure. Circ Res 56:517–524CrossRefPubMedGoogle Scholar
  18. 18.
    Drake-Holland AJ, Laird JD, Noble MI, Spaan JA, Vergroesen I (1984) Oxygen and coronary vascular resistance during autoregulation and metabolic vasodilation in the dog. J Physiol 348:285–299. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Duncker DJ, van Zon NS, Ishibashi Y, Bache RJ (1996) Role of K+ ATP channels and adenosine in the regulation of coronary blood flow during exercise with normal and restricted coronary blood flow. J Clin Investig 97:996–1009. CrossRefPubMedGoogle Scholar
  20. 20.
    Eng C, Jentzer JH, Kirk ES (1982) The effects of the coronary capacitance on the interpretation of diastolic pressure–flow relationships. Circ Res 50:334–341. CrossRefPubMedGoogle Scholar
  21. 21.
    Feigl EO (1989) Coronary autoregulation. J Hypertens Suppl 7:S55–S58 (discussion S59) CrossRefPubMedGoogle Scholar
  22. 22.
    Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205. CrossRefPubMedGoogle Scholar
  23. 23.
    Feigl EO, Neat GW, Huang AH (1990) Interrelations between coronary artery pressure, myocardial metabolism and coronary blood flow. J Mol Cell Cardiol 22:375–390. CrossRefPubMedGoogle Scholar
  24. 24.
    Goodwill AG, Dick GM, Kiel AM, Tune JD (2017) Regulation of coronary blood flow. Compr Physiol 7:321–382. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hanley FL, Grattan MT, Stevens MB, Hoffman JI (1986) Role of adenosine in coronary autoregulation. Am J Physiol 250:H558–H566. PubMedCrossRefGoogle Scholar
  26. 26.
    Hoffman JI, Spaan JA (1990) Pressure–flow relations in coronary circulation. Physiol Rev 70:331–390. CrossRefPubMedGoogle Scholar
  27. 27.
    Kajiya F, Tsujioka K, Ogasawara Y, Wada Y, Hiramatsu O, Goto M, Nakai M, Tadaoka S, Matsuoka S, Sha Y (1988) Effect of packed cell volume on diastolic coronary artery pressure–flow relations in the dog. Cardiovasc Res 22:545–554. CrossRefPubMedGoogle Scholar
  28. 28.
    Kiel AM, Goodwill AG, Noblet JN, Barnard AL, Sassoon DJ, Tune JD (2017) Regulation of myocardial oxygen delivery in response to graded reductions in hematocrit: role of K(+) channels. Basic Res Cardiol 112:65. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kirkeeide R, Puschmann S, Schaper W (1981) Diastolic coronary pressure–flow relationships investigated by induced long-wave pressure oscillations. Basic Res Cardiol 76:564–569. CrossRefPubMedGoogle Scholar
  30. 30.
    Klocke FJ, Mates RE, Canty JM Jr, Ellis AK (1985) Coronary pressure–flow relationships. Controversial issues and probable implications. Circ Res 56:310–323. CrossRefPubMedGoogle Scholar
  31. 31.
    Komaru T, Lamping KG, Dellsperger KC (1994) Role of adenosine in vasodilation of epimyocardial coronary microvessels during reduction in perfusion pressure. J Cardiovasc Pharmacol 24:434–442CrossRefPubMedGoogle Scholar
  32. 32.
    Kroll K, Hendriks FF, Schipperheyn JJ (1979) Extracorporeal circulation system for coronary artery perfusion in the closed-chest dog. Am J Physiol 236:H652–H656. PubMedCrossRefGoogle Scholar
  33. 33.
    Kuo L, Chilian WM, Davis MJ (1990) Coronary arteriolar myogenic response is independent of endothelium. Circ Res 66:860–866. CrossRefPubMedGoogle Scholar
  34. 34.
    Kuo L, Chilian WM, Davis MJ (1991) Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. Am J Physiol 261:H1706–H1715. PubMedCrossRefGoogle Scholar
  35. 35.
    Kuo L, Davis MJ, Chilian WM (1990) Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol 259:H1063–H1070. PubMedCrossRefGoogle Scholar
  36. 36.
    Levy PS, Kim SJ, Eckel PK, Chavez R, Ismail EF, Gould SA, Ramez Salem M, Crystal GJ (1993) Limit to cardiac compensation during acute isovolemic hemodilution: influence of coronary stenosis. Am J Physiol 265:H340–H349. PubMedCrossRefGoogle Scholar
  37. 37.
    Miller FJ Jr, Dellsperger KC, Gutterman DD (1997) Myogenic constriction of human coronary arterioles. Am J Physiol 273:H257–H264. CrossRefPubMedGoogle Scholar
  38. 38.
    Mosher P, Ross J Jr, McFate PA, Shaw RF (1964) Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14:250–259. CrossRefPubMedGoogle Scholar
  39. 39.
    Osher WJ (1953) Pressure–flow relationship of the coronary system. Am J Physiol 172:403–416. PubMedCrossRefGoogle Scholar
  40. 40.
    Smith TP Jr, Canty JM Jr (1993) Modulation of coronary autoregulatory responses by nitric oxide. Evidence for flow-dependent resistance adjustments in conscious dogs. Circ Res 73:232–240. CrossRefPubMedGoogle Scholar
  41. 41.
    Spaan JA (1985) Coronary diastolic pressure–flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 56:293–309. CrossRefPubMedGoogle Scholar
  42. 42.
    Stepp DW, Kroll K, Feigl EO (1997) K + ATP channels and adenosine are not necessary for coronary autoregulation. Am J Physiol 273:H1299–H1308. PubMedCrossRefGoogle Scholar
  43. 43.
    Traverse JH, Chen Y, Crampton M, Voss S, Bache RJ (2001) Increased extravascular forces limit endothelium-dependent and -independent coronary vasodilation in congestive heart failure. Cardiovasc Res 52:454–461. CrossRefPubMedGoogle Scholar
  44. 44.
    Tune JD (2014) Coronary circulation. Morgan & Claypool Life Sciences, WillistonGoogle Scholar
  45. 45.
    van de Hoef TP, Nolte F, Rolandi MC, Piek JJ, van den Wijngaard JP, Spaan JA, Siebes M (2012) Coronary pressure–flow relations as basis for the understanding of coronary physiology. J Mol Cell Cardiol 52:786–793. CrossRefPubMedGoogle Scholar
  46. 46.
    Vergroesen I, Noble MI, Wieringa PA, Spaan JA (1987) Quantification of O2 consumption and arterial pressure as independent determinants of coronary flow. Am J Physiol 252:H545–H553. PubMedCrossRefGoogle Scholar
  47. 47.
    Westerhof N, Boer C, Lamberts RR, Sipkema P (2006) Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 86:1263–1308. CrossRefPubMedGoogle Scholar
  48. 48.
    Yonekura S, Watanabe N, Caffrey JL, Gaugl JF, Downey HF (1987) Mechanism of attenuated pressure–flow autoregulation in right coronary circulation of dogs. Circ Res 60:133–141. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexander M. Kiel
    • 1
    • 2
  • Adam G. Goodwill
    • 1
  • Hana E. Baker
    • 1
  • Gregory M. Dick
    • 3
  • Johnathan D. Tune
    • 1
    Email author
  1. 1.Department of Cellular and Integrative PhysiologyIndiana University School of MedicineIndianapolisUSA
  2. 2.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.California Medical Innovations InstituteSan DiegoUSA

Personalised recommendations