Skip to main content

Advertisement

Log in

Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Walnuts (Juglans regia) are known to have anti-cancer and immunomodulatory effects. However, little information is available on the effects of walnut phenolic extract (WPE) on intestinal inflammation and colitis-associated colon cancer.

Methods

COLO205 cells were pretreated with WPE and then stimulated with tumor necrosis factor (TNF)-α. In the acute colitis model, wild type mice (C57BL/6) were administered 4% dextran sulfate sodium (DSS) for 5 days. In the chronic colitis model, interleukin (IL)-10−/− mice were administered with either the vehicle or WPE (20 mg/kg) by oral gavage daily for 2 weeks. In an inflammation-associated tumor model, wild type mice were administered a single intraperitoneal injection of azoxymethane followed by three cycles of 2% DSS for 5 days and 2 weeks of free water consumption.

Results

WPE significantly inhibited IL-8 and IL-1α expression in COLO205 cells. WPE attenuated both the TNF-α-induced IκB phosphorylation/degradation and NF-κB DNA binding activity. The administration of oral WPE significantly reduced the severity of colitis in both acute and chronic colitis models, including the IL-10−/− mice. In immunohistochemical staining, WPE attenuated NF-κB signaling in the colons of both colitis models. Finally, WPE also significantly reduced tumor development in a murine model of colitis-associated colon cancer (CAC).

Conclusions

WPE ameliorates acute and chronic colitis and CAC in mice, suggesting that WPE may have potentials for the treatment of inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361(21):2066–2078. https://doi.org/10.1056/NEJMra0804647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ng WK, Wong SH, Ng SC (2016) Changing epidemiological trends of inflammatory bowel disease in Asia. Intest Res 14(2):111–119. https://doi.org/10.5217/ir.2016.14.2.111

    Article  PubMed  PubMed Central  Google Scholar 

  3. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG (2012) Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142(1):46–54. https://doi.org/10.1053/j.gastro.2011.10.001 (e42; quiz e30)

    Article  PubMed  Google Scholar 

  4. Feagins LA, Souza RF, Spechler SJ (2009) Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat Rev Gastroenterol Hepatol 6(5):297–305. https://doi.org/10.1038/nrgastro.2009.44

    Article  CAS  PubMed  Google Scholar 

  5. Terzic J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138(6):2101–2114 e2105. https://doi.org/10.1053/j.gastro.2010.01.058

    Article  CAS  PubMed  Google Scholar 

  6. Macdonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307(5717):1920–1925. https://doi.org/10.1126/science.1106442

    Article  CAS  PubMed  Google Scholar 

  7. Kagnoff MF, Eckmann L (1997) Epithelial cells as sensors for microbial infection. J Clin Invest 100(1):6–10. https://doi.org/10.1172/JCI119522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim JM (2014) Antimicrobial proteins in intestine and inflammatory bowel diseases. Intest Res 12(1):20–33. https://doi.org/10.5217/ir.2014.12.1.20

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jobin C, Sartor RB (2000) The I kappa B/NF-kappa B system: a key determinant of mucosalinflammation and protection. Am J Physiol Cell Physiol 278(3):C451–462

    Article  Google Scholar 

  10. Dreher ML, Maher CV, Kearney P (1996) The traditional and emerging role of nuts in healthful diets. Nutr Rev 54(8):241–245

    Article  CAS  PubMed  Google Scholar 

  11. Majid S, Khanduja KL, Gandhi RK, Kapur S, Sharma RR (1991) Influence of ellagic acid on antioxidant defense system and lipid peroxidation in mice. Biochem Pharmacol 42(7):1441–1445

    Article  CAS  PubMed  Google Scholar 

  12. Constantinou A, Stoner GD, Mehta R, Rao K, Runyan C, Moon R (1995) The dietary anticancer agent ellagic acid is a potent inhibitor of DNA topoisomerases in vitro. Nutr Cancer 23(2):121–130. https://doi.org/10.1080/01635589509514368

    Article  CAS  PubMed  Google Scholar 

  13. Jenab M, Ferrari P, Slimani N, Norat T, Casagrande C, Overad K, Olsen A, Stripp C, Tjonneland A, Boutron-Ruault MC, Clavel-Chapelon F, Kesse E, Nieters A, Bergmann M, Boeing H, Naska A, Trichopoulou A, Palli D, Krogh V, Celentano E, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Ocke MC, Peeters PH, Engeset D, Quiros JR, Gonzalez CA, Martinez C, Chirlaque MD, Ardanaz E, Dorronsoro M, Wallstrom P, Palmqvist R, Van Guelpen B, Bingham S, San Joaquin MA, Saracci R, Kaaks R, Riboli E (2004) Association of nut and seed intake with colorectal cancer risk in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomark Prev 13(10)1595–1603 (a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology)

    CAS  Google Scholar 

  14. Yeh CC, You SL, Chen CJ, Sung FC (2006) Peanut consumption and reduced risk of colorectal cancer in women: a prospective study in Taiwan. World J Gastroenterol 12(2):222–227

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nagel JM, Brinkoetter M, Magkos F, Liu X, Chamberland JP, Shah S, Zhou J, Blackburn G, Mantzoros CS (2012) Dietary walnuts inhibit colorectal cancer growth in mice by suppressing angiogenesis. Nutrition 28(1):67–75. https://doi.org/10.1016/j.nut.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  16. Lee J, Kim YS, Lee J, Heo SC, Lee KL, Choi SW, Kim Y (2016) Walnut phenolic extract and its bioactive compounds suppress colon cancer cell growth by regulating colon cancer stemness. Nutrients 8 (7). https://doi.org/10.3390/nu8070439

  17. Koh SJ, Choi Y, Kim BG, Lee KL, Kim DW, Kim JH, Kim JW, Kim JS (2016) Matricellular protein periostin mediates intestinal inflammation through the activation of nuclear factor kappaB signaling. PloS One 11(2):e0149652. https://doi.org/10.1371/journal.pone.0149652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koh SJ, Kim JW, Kim BG, Lee KL, Chun J, Kim JS (2015) Fexofenadine regulates nuclear factor-kappaB signaling and endoplasmic reticulum stress in intestinal epithelial cells and ameliorates acute and chronic colitis in mice. J Pharmacol Exp Ther 352(3):455–461. https://doi.org/10.1124/jpet.114.217844

    Article  CAS  PubMed  Google Scholar 

  19. Koh SJ, Kim JW, Kim BG, Lee KL, Im JP, Kim JS (2015) Fluoxetine inhibits hyperresponsive lamina propria mononuclear cells and bone marrow-derived dendritic cells, and ameliorates chronic colitis in IL-10-deficient mice. Dig Dis Sci 60(1):101–108. https://doi.org/10.1007/s10620-014-3326-9

    Article  CAS  PubMed  Google Scholar 

  20. Dieleman LA, Palmen MJ, Akol H, Bloemena E, Pena AS, Meuwissen SG, Van Rees EP (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114(3):385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koh S-J, Kim JM, Kim I-K, Kim N, Jung HC, Song IS, Kim JS (2010) Fluoxetine inhibits NF-κB signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice. Am J Physiol-Gastrointest Liver Physiol 301(1):G9–G19

    Google Scholar 

  22. Koh SJ, Kim JM, Kim IK, Ko SH, Kim JS (2014) Anti-inflammatory mechanism of metformin and its effects in intestinal inflammation and colitis-associated colon cancer. J Gastroenterol Hepatol 29(3):502–510

    Article  CAS  PubMed  Google Scholar 

  23. Willis LM, Bielinski DF, Fisher DR, Matthan NR, Joseph JA (2010) Walnut extract inhibits LPS-induced activation of BV-2 microglia via internalization of TLR4: possible involvement of phospholipase D2. Inflammation 33(5):325–333. https://doi.org/10.1007/s10753-010-9189-0

    Article  CAS  PubMed  Google Scholar 

  24. Liu MC, Yang SJ, Hong D, Yang JP, Liu M, Lin Y, Huang CH, Wang CJ (2016) A simple and convenient method for the preparation of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Chem Cent J 10:39. https://doi.org/10.1186/s13065-016-0184-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abiodun OO, Rodriguez-Nogales A, Algieri F, Gomez-Caravaca AM, Segura-Carretero A, Utrilla MP, Rodriguez-Cabezas ME, Galvez J (2016) Antiinflammatory and immunomodulatory activity of an ethanolic extract from the stem bark of Terminalia catappa L. (Combretaceae): in vitro and in vivo evidences. J Ethnopharmacol 192:309–319. https://doi.org/10.1016/j.jep.2016.07.056

    Article  CAS  PubMed  Google Scholar 

  26. Kim H, Banerjee N, Ivanov I, Pfent CM, Prudhomme KR, Bisson WH, Dashwood RH, Talcott ST, Mertens-Talcott SU (2016) Comparison of anti-inflammatory mechanisms of mango (Mangifera Indica L.) and pomegranate (Punica Granatum L.) in a preclinical model of colitis. Mol Nutr Food Res 60(9):1912–1923. https://doi.org/10.1002/mnfr.201501008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759. https://doi.org/10.1038/nri1703

    Article  CAS  PubMed  Google Scholar 

  28. Pandurangan AK, Mohebali N, Esa NM, Looi CY, Ismail S, Saadatdoust Z (2015) Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: possible mechanisms. Int Immunopharmacol 28(2):1034–1043. https://doi.org/10.1016/j.intimp.2015.08.019

    Article  CAS  PubMed  Google Scholar 

  29. Rosillo MA, Sanchez-Hidalgo M, Cardeno A, Aparicio-Soto M, Sanchez-Fidalgo S, Villegas I, de la Lastra CA (2012) Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacol Res 66(3):235–242. https://doi.org/10.1016/j.phrs.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  30. Walker DG, Williams HR, Kane SP, Mawdsley JE, Arnold J, McNeil I, Thomas HJ, Teare JP, Hart AL, Pitcher MC, Walters JR, Marshall SE, Orchard TR (2011) Differences in inflammatory bowel disease phenotype between South Asians and Northern Europeans living in North West London, UK. Am J Gastroenterol 106(7):1281–1289. https://doi.org/10.1038/ajg.2011.85

    Article  PubMed  Google Scholar 

  31. Pinsk V, Lemberg DA, Grewal K, Barker CC, Schreiber RA, Jacobson K (2007) Inflammatory bowel disease in the South Asian pediatric population of British Columbia. Am J Gastroenterol 102(5):1077–1083. https://doi.org/10.1111/j.1572-0241.2007.01124.x

    Article  PubMed  Google Scholar 

  32. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. https://doi.org/10.1038/nature12820

    Article  CAS  PubMed  Google Scholar 

  33. Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7(2):27

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education [Grant Number. NRF-2014R1A1A2057695(S-JK)], [2016-R1D1A1B03931961(S-JK)], by a multidisciplinary research grant-in-aid from the Seoul Metropolitan Government Seoul National University (SMG-SNU) Boramae Medical Center (02-2015-01) and by a Grant from California Walnut Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kook Lae Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, SJ., Choi, YI., Kim, Y. et al. Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice. Eur J Nutr 58, 1603–1613 (2019). https://doi.org/10.1007/s00394-018-1704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1704-3

Keywords

Navigation