Skip to main content

Advertisement

Log in

Hydroclimatic trends during 1950–2018 over global land

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamflow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacific coasts of Canada. Streamflow records largely confirm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions in 1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacific Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90 % of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adler RF, Gu G, Sapiano M, Wang JJ, Huffman GJ (2017) Global precipitation: means, variations and trends during the satellite era (1979–2014). Surv Geophys 38:679–699. https://doi.org/10.1007/s10712-017-9416-4

    Article  Google Scholar 

  • Adler RF, Sapiano M, Huffman GJ, Wang J-J, Gu G, Bolvin D, Chiu L, Schneider U, Becker A, Nelkin E, Xie P, Ferraro R, Shin D-B (2018) The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere 9:138. doi:https://doi.org/10.3390/atmos9040138

    Article  Google Scholar 

  • Bellomo K, Murphy LN, Cane MA, Clement AC, Polvani LM (2018) Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble. Clim Dyn 50:3687–3698

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232. https://doi.org/10.1038/nature10946

    Article  Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Burke EJ, Brown SJ (2008) Evaluating uncertainties in the projection of future drought. J Hydrometeorol 9:292–299

    Article  Google Scholar 

  • Bonfils C, Co-authors (2017) Competing influences of anthropogenic warming, ENSO, and plant physiology on future terrestrial aridity. J Clim 30:6883–6904

    Article  Google Scholar 

  • Bonfils CJW, Santer BD, Fyfe JC, Marvel K, Phillips TJ, Zimmerman SR (2020) Human influence on joint changes in temperature, rainfall and continental aridity. Nat Clim Chang 10:726–731. https://doi.org/10.1038/s41558-020-0821-1

    Article  Google Scholar 

  • Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Chen J, Dai A, Zhang Y, Rasmussen KL (2020) Changes in the convective potential available energy and convective inhibition under global warming. J Clim 33:2025–2050

    Article  Google Scholar 

  • Chou C, Neelin JD, Chen C-A, Tu J-Y (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • Collins M et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, et al. (ed) Climate change 2013: The physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp. 1029–1136

  • Cook BI, Smerdon JE, Seager R, Coats S (2014) Global warming and 21st century drying. Climate Dyn 43:2607–2627

    Article  Google Scholar 

  • Cook BI, Mankin JS, Marvel K, Williams AP, Smerdon JE, Anchukaitis KJ (2020) Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future 8: e2019EF001461. https://doi.org/10.1029/2019EF001461

  • Dai A, Fung IY, Del Genio AD (1997) Surface observed global land precipitation variations during 1900–1988. J Climate 10:2943–2962

    Article  Google Scholar 

  • Dai A (2006) Recent climatology, variability and trends in global surface humidity. J Climate 19:3589–3606

    Article  Google Scholar 

  • Dai A (2011a) Drought under global warming: A review. WIREs Clim Change 2:45–65

    Article  Google Scholar 

  • Dai A (2011b) Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J Geophys Res 116:D12115

    Article  Google Scholar 

  • Dai A (2013a) Increasing drought under global warming in observations and models. Nature Climate Change 3:52–58

    Article  Google Scholar 

  • Dai A (2013b) The influence of the Inter-decadal Pacific Oscillation on U.S. precipitation during 1923–2010. Clim Dyn 41:633–646. DOI https://doi.org/10.1007/s00382-012-1446-5

    Article  Google Scholar 

  • Dai A (2016) Historical and Future Changes in Streamflow and Continental Runoff: A Review. Chapter 2 of Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts, Geophysical Monograph 221, edited by Qiuhong Tang and Taikan Oki, AGU, John Wiley & Sons, pp. 17–37

  • Dai A, Wigley TML (2000) Global patterns of ENSO-induced precipitation. Geophys Res Lett 27:1283–1286

    Article  Google Scholar 

  • Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J Hydrometeorology 3:660–687

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J Hydrometeorology 5:1117–1130

    Article  Google Scholar 

  • Dai A, Qian T, Trenberth KE, Milliman JD (2009) Changes in continental freshwater discharge from 1949–2004. J Climate 22:2773–2791

    Article  Google Scholar 

  • Dai A, Zhao T (2017) Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Clim Change 144:519–533. DOI:https://doi.org/10.1007/s10584-016-1705-2

    Article  Google Scholar 

  • Dai A, Zhao T, Chen J (2018) Climate change and drought: A precipitation and evaporation perspective. Current Clim Change Reports 4:301–312. DOI:https://doi.org/10.1007/s40641-018-0101-6

    Article  Google Scholar 

  • Dai A, Bloecker CE (2019) Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim Dyn 52:289–306. https://doi.org/10.1007/s00382-018-4132-4

    Article  Google Scholar 

  • Deser C, Knutti R, Solomon S, Phillips AS (2012a) Communication of the role of natural variability in future North American climate. Nat Clim Change 2:775–779. https://doi.org/10.1038/nclimate1562

    Article  Google Scholar 

  • Deser C, Phillips AS, Bourdette V, Teng H (2012b) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability. J Clim 27:2271–2296

    Article  Google Scholar 

  • Deser C, Terray L, Phillips AS (2016) Forced and internal components of winter air temperature trends over North America during the past 50 years: mechanisms and implications. J Clim 29:2237–2258. https://doi.org/10.1175/JCLI-D-15-0304.1

    Article  Google Scholar 

  • Döll P, Fiedler K, Zhang J (2009) Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol Earth SystSci 13:2413–2432. doi:https://doi.org/10.5194/hess-13-2413-2009

    Article  Google Scholar 

  • Dong B, Dai A (2015) The influence of the Inter-decadal Pacific Oscillation on temperature and precipitation over the globe. Clim Dyn 45:2667–2681

    Article  Google Scholar 

  • Dong B, Dai A (2017) The uncertainties and causes of the recent changes in global evapotranspiration from 1982–2010. Clim Dyn 49:279–296. doi:https://doi.org/10.1007/s00382-016-3342-x

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Feng S, Fu Q (2013) Expansion of global dry lands under warming climate. Atmos Chem Phys 13:10081–10094

    Article  Google Scholar 

  • Fu Q, Feng S (2014) Responses of terrestrial aridity to global warming. J Geophys Res Atmos 119:7863–7875

    Article  Google Scholar 

  • Fu Q, Lin L, Huang J, Feng S, Gettelman A (2016) Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. J Geophys Res Atmos 121:2857–2873. doi:https://doi.org/10.1002/2015JD024075

    Article  Google Scholar 

  • Gehne M, Hamill TM, Kiladis GN, Trenberth KE (2016) Comparison of global precipitation estimates across a range of temporal and spatial scales. J Clim 29:7773–7795. doi:https://doi.org/10.1175/JCLI-D-15-0618.1

    Article  Google Scholar 

  • Gu G, Adler RF (2013) Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: Global warming and/or pacific decadal variability? Clim. Dyn 40:3009–3022. doi:https://doi.org/10.1007/s00382-012-1443-8

    Article  Google Scholar 

  • Gu G, Adler RF (2015) Spatial patterns of global precipitation change and variability during 1901–2010. J Clim 28:4431–4453. doi:https://doi.org/10.1175/JCLI-D-14-00201.1

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Intl J Climatology 34:623–642. doi:https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  • Hua W, Dai A, Qin M (2018) Contributions of internal variability and external forcing to the recent Pacific decadal variations. Geophys Res Lett 45:7084–7092. https://doi.org/10.1029/2018GL079033

    Article  Google Scholar 

  • Hua W, Dai A, Zhou L, Qin M, Chen H (2019) An externally-forced decadal rainfall seesaw pattern over the Sahel and southeast Amazon. Geophys Res Lett 46:923–932. https://doi.org/10.1029/2018GL081406

    Article  Google Scholar 

  • Huang J, Li Y, Fu C, Chen F, Fu Q, Dai A et al (2017) Dryland climate change: Recent progress and challenges. Rev Geophys 55:719–778. DOI:https://doi.org/10.1002/2016RG000550

    Article  Google Scholar 

  • Huang D, Dai A, Zhu J (2021) Is the subtropical drying a transient response to increased CO2? J Clim (To be submitted)

  • Kennedy JJ, Rayner NA, Smith RO, Saunby M, Parker DE (2011) Reassessing biases and other uncertainties in sea-surface temperature observations since 1850. Part 1: measurement and sampling errors. J Geophys Res 116:D14103. doi:https://doi.org/10.1029/2010JD015218

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17706. https://doi.org/10.1029/2006GL026242

    Article  Google Scholar 

  • Knutson TR, Zeng F (2018) Model assessment of observed precipitation trends over land regions: Detectable human influences and possible low bias in model trends. J Climate 31:4617–4637. https://doi.org/10.1175/JCLI-D-17-0672.1

    Article  Google Scholar 

  • Li X, Zhai G, Gao S, Shen X (2015) Decadal trends of global precipitation in the recent 30 years. Atmos Sci Lett 16:22–26. doi:https://doi.org/10.1002/asl2.514

    Article  Google Scholar 

  • Liu ZY (2012) Dynamics of interdecadal climate variability: A historical perspective. J Clim 25:1963–1995

    Article  Google Scholar 

  • Liu C, Allan RP (2013) Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ Res Lett 8:1–11. doi:https://doi.org/10.1088/1748-9326/8/3/034002

    Article  Google Scholar 

  • Marvel K, Cook BI, Bonfils CJ, Durack PJ, Smerdon JE, Williams AP (2019) Twentieth-century hydroclimate changes consistent with human influence. Nature 569:59–65

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein F, Gaye AT et al (2007) Global Climate Projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, S. Solomon et al., Eds., Cambridge University Press, pp.746–845

  • Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213. https://doi.org/10.1007/s10584-011-0156-z

    Article  Google Scholar 

  • Murphy LN, Bellomo K, Cane M, Clement A (2017) The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophys Res Lett 44:2472–2480. https://doi.org/10.1002/2016GL071337

    Article  Google Scholar 

  • Nguyen P, Thorstensen A, Sorooshian S, Hsu K-L, AghaKouchak A, Ashouri H et al (2018) Global precipitation trends across spatial scales using satellite observations. Bull Am Meteorol Soc 99:689–697

    Article  Google Scholar 

  • Osborn TJ, Jones PD (2014) The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth. Earth System Science Data 6:61–68. DOI:https://doi.org/10.5194/essd-6-61-2014

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. US Weather Bureau Research Paper 45: 55 pp (Available from https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf)

  • Prudhomme C et al (2014) Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci USA 111(9):3262–3267

    Article  Google Scholar 

  • Qin M, Hua W, Dai A (2020a) Aerosol-forced multi-decadal variations across all ocean basins in models and observations since 1920. Science Advances 6:eabb0425. https://doi.org/10.1126/sciadv.abb0425

    Article  Google Scholar 

  • Qin M, Dai A, Hua W (2020b) Quantifying contributions of internal variability and external forcing to Atlantic multidecadal variability since 1870. Geophys Res Lett. https://doi.org/10.1029/2020GL089504

    Article  Google Scholar 

  • Scheff J, Frierson DMW (2012) Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys Res Lett 39:L18704. doi:https://doi.org/10.1029/2012GL052910

    Article  Google Scholar 

  • Scheff J, Frierson DMW (2014) Scaling Potential Evapotranspiration with Greenhouse Warming. J Climate 27:1539–1558

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M (2018) GPCC Full Data Monthly Product Version 2018 at 2.5o: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data. DOI: 10.5676/DWD_GPCC/FD_M_V2018_250 https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html

  • Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438. doi:https://doi.org/10.1038/nature11575

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann R (2007) How often will it rain? J Climate 20:4801–4818

    Article  Google Scholar 

  • Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu K-L (2018) A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev Geophys 56: 79–107. https://doi.org/10.1002/2017RG000574

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Trammell JH, Jiang X, Li L, Liang M, Li M, Zhou J et al (2015) Investigation of precipitation variations over wet and dry areas from observation and model. Adv Meteorol 2015: 1–9. doi:https://doi.org/10.1155/2015/981092

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Amer Meteorol Soc 84:1205–1217

    Article  Google Scholar 

  • Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8:758–769

    Article  Google Scholar 

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nature Climate Change 4:17–22

    Article  Google Scholar 

  • van der Schrier G, Jones PD, Briffa KR (2011) The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. J Geophys Res 116:D03106. doi:https://doi.org/10.1029/2010JD015001

    Article  Google Scholar 

  • van der Schrier G, Barichivich J, Briffa KR, Jones PD (2013) A scPDSI-based global data set of dry and wet spells for 1901–2009. J Geophys Res Atmos 118:4025–4048. doi:https://doi.org/10.1002/jgrd.50355

    Article  Google Scholar 

  • Vicente-Serrano SM, Nieto R, Gimeno L, Azorin-Molina C, Drumond A, El Kenawy A, Dominguez-Castro F, Tomas-Burguera M, Peña-Gallardo M (2018) Recent changes of relative humidity: Regional connections with land and ocean processes. Earth Syst Dyn 9:915–937. https://doi.org/10.5194/esd-9-915-2018

    Article  Google Scholar 

  • Vicente-Serrano SM, Peña-Gallardo M, Hannaford J, Murphy C, Lorenzo-Lacruz J, Dominguez-Castro F, López-Moreno J, Beguería S, Noguera I, Harrigan S, Vidal J-P (2019) Climate, irrigation, and land-cover change explain streamflow trends in countries bordering the Northeast Atlantic. Geophys Res Lett 46:10821–10833

    Article  Google Scholar 

  • Vicente-Serrano SM, Quiring S, Peña-Gallardo M, Domínguez-castro F, Yuan S (2020) A review of environmental droughts: Increased risk under global warming? Earth Sci Rev 201:102953. https://doi.org/10.1016/j.earscirev.2019.102953

    Article  Google Scholar 

  • Willett KM, Berry DI, Bosilovich MG, Simmons AJ (2019) Hydrological cycle: Surface humidity. In State of the Climate in 2018. Bull Am Meteorol Soc 100:S25–S27. doi:https://doi.org/10.1175/2019BAMSStateoftheClimate.1

    Article  Google Scholar 

  • Wang B, Ding Q (2006) Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett 33:L06711. doi:https://doi.org/10.1029/2005GL025347

    Article  Google Scholar 

  • Wang B, Liu J, Kim H-J, Webster PJ, Yim S-Y (2012) Recent change of the global monsoon precipitation (1979–2008). Climate Dyn 39:1123–1135

    Article  Google Scholar 

  • Zhang L, Zhou T (2011) An assessment of monsoon precipitation changes during 1901–2001. Climate Dyn 37:279–296

    Article  Google Scholar 

  • Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448:461–465. doi:https://doi.org/10.1038/nature06025

    Article  Google Scholar 

  • Zhao T, Dai A (2015) The magnitude and causes of global drought changes in the 21st century under a low-moderate emissions scenario. J Climate 28:4490–4512. doi:https://doi.org/10.1175/JCLI-D-14-00363.1

    Article  Google Scholar 

  • Zhao T, Dai A (2017) Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes. Clim Change 144:535–548. DOI https://doi.org/10.1007/s10584-016-1742-x

    Article  Google Scholar 

Download references

Acknowledgements

I thank the three anonymous reviewers for their constructive comments. I am grateful to the CMIP5 modeling groups and NCAR CESM project, the Program for Climate Model Diagnosis and Intercomparison and the WCRP’s Working Group on Coupled Modelling for their roles in making available the CMIP5 multi-model datasets. This study is partly supported by the funding from the U.S. National Science Foundation (Grant Nos. AGS-2015780 and OISE-1743738) and the U.S. National Oceanic and Atmospheric Administration (Award No. NA18OAR4310425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Dai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, A. Hydroclimatic trends during 1950–2018 over global land. Clim Dyn 56, 4027–4049 (2021). https://doi.org/10.1007/s00382-021-05684-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05684-1

Keywords

Navigation