Advertisement

Climate Dynamics

, Volume 50, Issue 3–4, pp 1335–1351 | Cite as

May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña-like cooling?

  • Jing-Jia Luo
  • Gang Wang
  • Dietmar Dommenget
Article

Abstract

Over the recent three decades sea surface temperate (SST) in the eastern equatorial Pacific has decreased, which helps reduce the rate of global warming. However, most CMIP5 model simulations with historical radiative forcing do not reproduce this Pacific La Niña-like cooling. Based on the assumption of “perfect” models, previous studies have suggested that errors in simulated internal climate variations and/or external radiative forcing may cause the discrepancy between the multi-model simulations and the observation. But the exact causes remain unclear. Recent studies have suggested that observed SST warming in the other two ocean basins in past decades and the thermostat mechanism in the Pacific in response to increased radiative forcing may also play an important role in driving this La Niña-like cooling. Here, we investigate an alternative hypothesis that common biases of current state-of-the-art climate models may deteriorate the models’ ability and can also contribute to this multi-model simulations-observation discrepancy. Our results suggest that underestimated inter-basin warming contrast across the three tropical oceans, overestimated surface net heat flux and underestimated local SST-cloud negative feedback in the equatorial Pacific may favor an El Niño-like warming bias in the models. Effects of the three common model biases do not cancel one another and jointly explain ~50% of the total variance of the discrepancies between the observation and individual models’ ensemble mean simulations of the Pacific SST trend. Further efforts on reducing common model biases could help improve simulations of the externally forced climate trends and the multi-decadal climate fluctuations.

Keywords

Pacific cooling trend CMIP5 simulations Common model biases Air–sea interactions Inter-basin influence 

Notes

Acknowledgements

The authors thank M. Wheeler, J. Arblaster, H. Hendon, and S. McGregor for their helpful internal reviews and two anonymous reviewers for their helpful comments. G.W. and D. D. are supported by the ARC project “Beyond the linear dynamics of the El Nino Southern Oscillation” (DP120101442) and the ARC Centre of Excellence in Climate System Science (CE110001028).

References

  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018CrossRefGoogle Scholar
  3. Cane MA, Clement AC, Kaplan A, Kushnir Y, Pozdnyakov D, Seager R, Zebiak SE, Murtugudde R (1997) Twentieth-century sea surface temperature trends. Science 275:957–960. doi: 10.1126/science.275.5302.957 CrossRefGoogle Scholar
  4. Chikamoto Y, Timmermann A, Luo JJ, Mochizuki T, Kimoto M, Watanabe M, Ishii M, Xie SP, Jin FF (2015) Skilful multi-year predictions of tropical trans-basin climate variability. Nat Commun 6:6869. doi: 10.1038/ncomms7869 CrossRefGoogle Scholar
  5. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196CrossRefGoogle Scholar
  6. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  7. DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP (2009) Climate response of the equatorial Pacific to global warming. J Clim 22(18):4873–4892CrossRefGoogle Scholar
  8. Dommenget D, Floeter J (2011) Conceptual understanding of climate change with a globally resolved energy balance model. Clim Dyn 37:2143–2165CrossRefGoogle Scholar
  9. Dommenget D, Haase S, Bayr T, Frauen C (2014) Analysis of the slab-ocean El Niño atmospheric feedbacks in observed and simulated ENSO dynamics. Clim Dyn 42:3187–3205CrossRefGoogle Scholar
  10. England MH, McGregor S, Spence P, Meehl GA, Timmermann, A, Cai W, Sen Gupta A, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227CrossRefGoogle Scholar
  11. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 741–866Google Scholar
  12. Fyfe JC, Gillett NP (2014) Recent observed and simulated warming. Nat Clim Change 4:150–151CrossRefGoogle Scholar
  13. Gu DF, Philander SH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807CrossRefGoogle Scholar
  14. Guemas V, Doblas-Reyes FJ, Andreu-Burillo I, Asif M (2013) Retrospective prediction of the global warming slowdown in the past decade. Nat Clim Change 3:649–653CrossRefGoogle Scholar
  15. Guilyardi E, Braconnot P, Jin FF, Kim ST, Kolasinski M, Li T, Musat I (2009) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718CrossRefGoogle Scholar
  16. Ham YG, Kug JS (2015) Role of north tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Clim Dyn 45(11):3103–3117CrossRefGoogle Scholar
  17. Huang B, Banzon VF, Freeman E, Laurimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang HM (2015) Extended reconstructed sea surface temperature version 4 (ERSST.v4), Part I. upgrades and intercomparisons. J Clim 28:911–930CrossRefGoogle Scholar
  18. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  19. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S, Hnilo J, Fiorino M, Potter G (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc 83:1631–1643CrossRefGoogle Scholar
  20. Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR, Menne MJ, Peterson TC, Vose RS, Zhang HM (2015) Possible artifacts of data biases in the recent surface warming hiatus. Science 348:1066–1067CrossRefGoogle Scholar
  21. Kiehl JT, Ramanathan V (1982) Radiative heating due to increased CO2—the role of H2O continuum absorption in the 12–18 Mu-Mregion. J Atmos Sci 39:2923–2926CrossRefGoogle Scholar
  22. Kim ST, Cai W, Jin FF, Yu JY (2014) ENSO stability in coupled climate models and its association with mean state. Clim Dyn 42:3313–3321CrossRefGoogle Scholar
  23. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932CrossRefGoogle Scholar
  24. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteor Soc Jpn 93:5–48CrossRefGoogle Scholar
  25. Kociuba G, Power SB (2015) Inability of CMIP5 models to simulate recent strengthening of the walker circulation: Implications for projections. J Clim 28:20–35CrossRefGoogle Scholar
  26. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407CrossRefGoogle Scholar
  27. Kug JS, Ham YG, Lee JY, Jin FF (2012) Improved simulation of two types of El Niño in CMIP5 models. Environ Res Lett. doi: 10.1088/1748-9326/7/3/034002 Google Scholar
  28. Li Y, Li JP, Zhang WJ, Zhao X, Xie F, Zheng F (2015) Ocean dynamical processes associated with the tropical Pacific cold tongue mode. J Geophys Res 120:6419–6435. doi: 10.1002/2015JC010814 CrossRefGoogle Scholar
  29. Li X, Xie SP, Gille ST, Yoo C (2016) Atlantic-induced pan-tropical climate change over the past three decades. Nat Clim Change 6:275–279CrossRefGoogle Scholar
  30. Luo JJ, Yamagata T (2001) Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J Geophys Res 106(C10):22211–22227CrossRefGoogle Scholar
  31. Luo JJ, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360CrossRefGoogle Scholar
  32. Luo JJ, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci 109:18701–18706CrossRefGoogle Scholar
  33. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  34. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon. Bull Amer Meteor Soc 78:1069–1079CrossRefGoogle Scholar
  35. Marotzke J, Forster PM (2015) Forcing, feedback and internal variability in global temperature trends. Nature 517:565–570CrossRefGoogle Scholar
  36. McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin FF, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892CrossRefGoogle Scholar
  37. McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi: 10.1029/2011GL048275 CrossRefGoogle Scholar
  38. Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Change 1: 360–364CrossRefGoogle Scholar
  39. Meehl GA, Hu A, Arblaster M, Fasullo JT, Trenberth KE (2013) Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim 26:7298–7310CrossRefGoogle Scholar
  40. Meehl GA, Teng H, Arblaster JM (2014) Climate model simulations of the observed early-2000s hiatus of global warming. Nat Clim Change 4:898–902CrossRefGoogle Scholar
  41. Pan YH, Oort AH (1983) Global climate variations connected with sea surface temperature anomalies in the eastern equatorial Pacific Ocean for the 1958–1973 period. Mon Weather Rev 111:1244–1258CrossRefGoogle Scholar
  42. Philander SGH, Gu D, Lambert G, Li T, Halpern D, Lau NC, Pacanowski RC (1996) Why the ITCZ is mostly north of the Equator. J Clim 9:2958–2972CrossRefGoogle Scholar
  43. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324CrossRefGoogle Scholar
  44. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  45. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  46. Risbey JS, Lewandowsky S, Langlais C, Monselensan DP, O’Kane TJ, Oreskes N (2014) Well-estimated global surface warming in climate projections selected for ENSO phase. Nat Clim Change 4:835–840CrossRefGoogle Scholar
  47. Roberts CD, Palmer MD, McNeall D, Collins M (2015) Quantifying the likelihood of a continued hiatus in global warming. Nat Clim Change 5:337–342CrossRefGoogle Scholar
  48. Schmidt GA, Ruedy RA, Miller RL, Lacis AA (2010) Attribution of the present-day total greenhouse effect. J Geophys Res 115:D20106. doi: 10.1029/2010JD014287 CrossRefGoogle Scholar
  49. Schmidt GA, Shindell DT, Tsigaridis K (2014) Reconciling warming trends. Nat Geosci 7:158–160CrossRefGoogle Scholar
  50. Seager R, Murtugudde R (1997) Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J Clim 10:521–534CrossRefGoogle Scholar
  51. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  52. Smith DM, Booth BBB, Dunstone NJ, Eade R, Hermanson L, Jones GS, Scaife AA, Sheen KL, Thompson V (2016) Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat Clim Change 6:936–940CrossRefGoogle Scholar
  53. Solomon A, Newman M (2012) Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat Clim Change 2:691–699CrossRefGoogle Scholar
  54. Takahashi C, Watanabe M (2016) Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat Clim Change 6:768–772CrossRefGoogle Scholar
  55. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteor Soc 93:485–498CrossRefGoogle Scholar
  56. Vecchi GA (2008) Examining the tropical Pacific’s response to global warming. EOS 89(9):81–83CrossRefGoogle Scholar
  57. Watanabe M, Shiogama H, Tatebe H, Hayashi M, Ishii M, Kimoto M (2014) Contribution of natural decadal variability to global warming acceleration and hiatus. Nat Clim Change 4:893–897CrossRefGoogle Scholar
  58. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10:1004–1020CrossRefGoogle Scholar
  59. Zhang WJ, Li JP, Zhao X (2010) Sea surface temperature cooling mode in the Pacific cold tongue. J Geophys Res 115:C12042. doi: 10.1029/2010JC006501 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Bureau of MeteorologyMelbourneAustralia
  2. 2.Department of Atmospheric and Oceanic SciencesUniversity of Colorado BoulderBoulderUSA
  3. 3.School of Earth, Atmosphere and EnvironmentMonash UniversityMelbourneAustralia

Personalised recommendations