Climate Dynamics

, Volume 48, Issue 5–6, pp 1595–1609 | Cite as

Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models

  • Yavor Kostov
  • John Marshall
  • Ute Hausmann
  • Kyle C. Armour
  • David Ferreira
  • Marika M. Holland
Article

Abstract

We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern Annular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the response of the Southern Ocean SST (55°S–70°S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step response function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only 3 years after a step increase in the SAM. This intermodel diversity can be related to differences in the models’ climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use observational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.

Keywords

Southern Ocean Southern Annular Mode Surface westerlies Atmosphere–ocean interaction CMIP5 

Notes

Acknowledgments

The CMIP5 data for this study is available at the Earth System Grid Federation (ESGF) Portal (https://pcmdi9.llnl.gov/projects/esgf-llnl/). Y.K. received support from an NSF MOBY Grant, award #1048926. J.M., U.H., D.F., and M.M.H. were funded by the NSF FESD program, Grant Award #1338814. K.C.A. was supported by a James McDonnell Foundation Postdoctoral Fellowship and NSF Grant OCE-1523641. We would like to thank the World Climate Research Programme and the Working Group on Coupled Modelling, which is in charge of CMIP5. We extend our appreciation to the organizations that support and develop the CMIP infrastructure: the US Department of Energy through its Program for Climate Model Diagnosis and Intercomparison and the Global Organization for Earth System Science Portals. We thank the CMIP5 climate modeling groups for providing their numerical output. We express gratitude to Paul O’Gorman, Jan Zika, and an anonymous reviewer for their helpful comments and suggestions.

References

  1. Armour KC, Bitz CM (2016) Observed and projected trends in Antarctic sea ice. US CLIVAR Var 13(4):13–19Google Scholar
  2. Armour KC, Marshall J, Scott J, Donohoe A, Newsom ER (2016) Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat Geosc. doi: 10.1038/ngeo2731
  3. Bitz CM, Polvani LM (2012) Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys Res Lett. doi: 10.1029/2012GL053393 Google Scholar
  4. Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU (2008) The response of the Antarctic Circumpolar Current to recent climate change. Nat Geosci 1:864–869. doi: 10.1038/ngeo362 CrossRefGoogle Scholar
  5. Ciasto LM, Thompson DWJ (2008) Observations of large scale ocean atmosphere interaction in the Southern Hemisphere. J Clim 21:1244–1259. doi: 10.1175/2007JCLI1809.1 CrossRefGoogle Scholar
  6. de Lavergne C, Palter JB, Galbraith ED, Bernardello R, Marinov I (2014) Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat Clim Change 4:278–282. doi: 10.1038/nclimate2132 CrossRefGoogle Scholar
  7. DeAngelis AM, Qu X, Zelinka MD, Hall A (2015) An observational radiative constraint on hydrologic cycle intensification. Nature 528:249–253. doi: 10.1038/nature15770 CrossRefGoogle Scholar
  8. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  9. Fan T, Deser C, Schneider DP (2014) Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys Res Lett 41:2419–2426. doi: 10.1002/2014GL059239 CrossRefGoogle Scholar
  10. Ferreira D, Marshall J, Bitz CM, Solomon S, Plumb A (2015) Antarctic ocean and sea ice response to ozone depletion: a two-time-scale problem. J Clim 28:1206–1226. doi: 10.1175/JCLI-D-14-00313.1 CrossRefGoogle Scholar
  11. Fyfe JC, Saenko OA, Zickfeld K et al (2007) The role of poleward-intensifying winds on Southern Ocean warming. J Clim 20:5391–5400. doi: 10.1175/2007JCLI1764.1 CrossRefGoogle Scholar
  12. Gillett NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273–275. doi: 10.1126/science.1087440 CrossRefGoogle Scholar
  13. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118:6704–6716. doi: 10.1002/2013JC009067 CrossRefGoogle Scholar
  14. Hall A, Visbeck M (2002) Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the Annular Mode. J Clim 15:3043–3057. doi: 10.1175/1520-0442(2002) 015<3043:SVITSH>2.0.CO;2 CrossRefGoogle Scholar
  15. Hasselmann K, Sausen R, Maier-Reimer E, Voss R (1993) On the cold start problem in transient simulations with coupled atmosphere–ocean models. Clim Dyn 9(2):53–61. doi: 10.1007/BF00210008 CrossRefGoogle Scholar
  16. Hausmann U, Czaja A, Marshall J (2016) Estimates of air–sea feedbacks on sea surface temperature anomalies in the Southern Ocean. J Clim 29:439–454. doi: 10.1175/JCLI-D-15-0015.1 CrossRefGoogle Scholar
  17. Hutchinson DK, England MH, Santoso A, Hogg AM (2013) Interhemispheric asymmetry in transient global warming: the role of Drake Passage. Geophys Res Lett 40:1587–1593. doi: 10.1002/grl.50341 CrossRefGoogle Scholar
  18. Hutchinson DK, England MH, Hogg AMcC, Snow K (2015) Interhemispheric asymmetry of warming in an eddy permitting coupled sector model. J Clim 28:7385–7406. doi: 10.1175/JCLI-D-15-0014.1 CrossRefGoogle Scholar
  19. Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40:1194–1199. doi: 10.1002/grl.50256 CrossRefGoogle Scholar
  20. Langlais C, Rintoul S, Zika J (2015) Sensitivity of Antarctic circumpolar transport and eddy activity to wind patterns in the Southern Ocean. J Phys Oceanogr 45:1051–1067. doi: 10.1175/JPO-D-14-0053.1 CrossRefGoogle Scholar
  21. Marshall J, Armour KC, Scott JR, Kostov Y, Hausmann U, Ferreira D, Shepherd TG, Bitz CM (2014) The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos Trans R Soc A 372:20130040. doi: 10.1098/rsta.2013.0040 CrossRefGoogle Scholar
  22. Marshall J, Scott JR, Armour KC, Campin J-M, Kelley M, Romanou A (2015) The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Clim Dyn 44(7):2287–2299. doi: 10.1007/s00382-014-2308-0 CrossRefGoogle Scholar
  23. Meijers AJS (2014) The Southern Ocean in the Coupled Model Intercomparison Project phase 5. Philos Trans R Soc A 372:20130296. doi: 10.1098/rsta.2013.0296 CrossRefGoogle Scholar
  24. Oke P, England M (2004) Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J Clim 17:1040–1054. doi: 10.1175/1520-0442(2004)017<1040:ORTCIT>2.0.CO;2 CrossRefGoogle Scholar
  25. Purich A, Caj W, England MH, Cowan T (2016) Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat Commun 7:10409. doi: 10.1038/ncomms10409 CrossRefGoogle Scholar
  26. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625. doi: 10.1175/1520-0442(2002) 015<1609:AIISAS>2.0.CO;2 CrossRefGoogle Scholar
  27. Russell JL, Dixon KW, Gnanadesikan A, Stouffer RJ, Toggweiler JR (2006) The Southern Hemisphere westerlies in a warming world: propping open the door to the deep ocean. J Clim 19:6382–6390. doi: 10.1175/JCLI3984.1 CrossRefGoogle Scholar
  28. Salleé J-B, Shuckburgh E, Bruneau N, Meijers AJS, Bracegirdle TJ, Wang Z (2013) Assessment of Southern Ocean mixed layer depths in CMIP5 models: historical bias and forcing response. J Geophys Res Oceans 118:1845–1862. doi: 10.1002/jgrc.20157 CrossRefGoogle Scholar
  29. Sen Gupta A, England M (2006) Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J Clim 19:4457–4486. doi: 10.1175/JCLI3843.1 CrossRefGoogle Scholar
  30. Sen Gupta A, England MH (2007) Coupled ocean–atmosphere feedback in the Southern Annular Mode. J Clim 20:3677–3692. doi: 10.1175/JCLI4200.1 CrossRefGoogle Scholar
  31. Sigmond M, Fyfe JC (2010) Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys Res Lett 37:L18502. doi: 10.1029/2010GL044301 Google Scholar
  32. Sigmond M, Fyfe JC (2014) The Antarctic sea ice response to the ozone hole in climate models. J Clim 27:1336–1342. doi: 10.1175/JCLI-D-13-00590.1 CrossRefGoogle Scholar
  33. Sigmond M, Reader MC, Fyfe JC, Gillett NP (2011) Drivers of past and future Southern Ocean change: stratospheric ozone versus greenhouse gas impacts. Geophys Res Lett. doi: 10.1029/2011GL047120 Google Scholar
  34. Solomon A, Polvani LM, Smith KL, Abernathey RP (2015) The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: an attribution study with CESM1 (WACCM). Geophys Res Lett. doi: 10.1002/2015GL064744 Google Scholar
  35. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  36. Thomas JL, Waugh DW, Gnanadesikan A (2015) Southern Hemisphere extratropical circulation: recent trends and natural variability. Geophys Res Lett 42:5508–5515. doi: 10.1002/2015GL064521
  37. Thompson D, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296(5569):895–899. doi: 10.1126/science.1069270 CrossRefGoogle Scholar
  38. Thompson DWJ, Solomon S, Kushner PJ et al (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4:741–749. doi: 10.1038/ngeo1296 CrossRefGoogle Scholar
  39. Wang G, Cai W, Purich A (2014) Trends in Southern Hemisphere wind-driven circulation in CMIP5 models over the 21st century: ozone recovery versus greenhouse forcing. J Geophys Res Oceans 119:2974–2986. doi: 10.1002/2013JC009589 CrossRefGoogle Scholar
  40. Waugh DW, Primeau F, DeVries T, Holzer M (2013) Recent changes in the ventilation of the Southern Oceans. Science 339:568–570. doi: 10.1126/science.1225411 CrossRefGoogle Scholar
  41. Waugh DW (2014) Changes in the ventilation of the southern oceans. Philos Trans R Soc A 372:20130269. doi: 10.1098/rsta.2013.0269 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yavor Kostov
    • 1
    • 2
  • John Marshall
    • 1
  • Ute Hausmann
    • 1
  • Kyle C. Armour
    • 3
  • David Ferreira
    • 4
  • Marika M. Holland
    • 5
  1. 1.Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordUK
  3. 3.Department of Atmospheric Sciences, School of OceanographyUniversity of WashingtonSeattleUSA
  4. 4.Department of MeteorologyUniversity of ReadingReadingUK
  5. 5.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations