Climate Dynamics

, Volume 41, Issue 7–8, pp 1853–1869 | Cite as

An explanation for the difference between twentieth and twenty-first century land–sea warming ratio in climate models



A land–sea surface warming ratio (or φ) that exceeds unity is a robust feature of both observed and modelled climate change. Interestingly, though climate models have differing values for φ, it remains almost time-invariant for a wide range of twenty-first century climate transient warming scenarios, while varying in simulations of the twentieth century. Here, we present an explanation for time-invariant land–sea warming ratio that applies if three conditions on radiative forcing are met: first, spatial variations in the climate forcing must be sufficiently small that the lower free troposphere warms evenly over land and ocean; second, the temperature response must not be large enough to change the global circulation to zeroth order; third, the temperature response must not be large enough to modify the boundary layer amplification mechanisms that contribute to making φ exceed unity. Projected temperature changes over this century are too small to breach the latter two conditions. Hence, the mechanism appears to show why both twenty-first century and time-invariant CO2 forcing lead to similar values of φ in climate models despite the presence of transient ocean heat uptake, whereas twentieth century forcing—which has a significant spatially confined anthropogenic tropospheric aerosol component that breaches the first condition—leads to modelled values of φ that vary widely amongst models and in time. Our results suggest an explanation for the behaviour of φ when climate is forced by other regionally confined forcing scenarios such as geo-engineered changes to oceanic clouds. Our results show how land–sea contrasts in surface and boundary layer characteristics act in tandem to produce the land–sea surface warming contrast.


Climate change Climate modelling Surface temperature Radiative forcing 


  1. Ackerley D, Booth BBB, Knight SHE, Highwood EJ, Frame DJ, Allen MR, Rowell DP (2011) Sensitivity of twentieth-century sahel rainfall to sulfate aerosol and CO2 forcing. J Clim 24:4999–5014CrossRefGoogle Scholar
  2. Andrews T, Forster PM, Gregory JM (2010) A surface energy perspective on climate change. J Clim 22:2557–2570CrossRefGoogle Scholar
  3. Bala G, Caldeira K, Nemani R, Cao L, Ban-Weiss G, Shin H-J (2011) Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle. Clim Dyn 37:915–931. doi:10.1007/s00382-010-0868-1 CrossRefGoogle Scholar
  4. Banks HT, Gregory JM (2006) Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake. Geophys Res Lett 33:L07608. doi:10.1029/2005GL025352 CrossRefGoogle Scholar
  5. Boucher O, Lohmann O (1995) The sulfate-CCN-cloud albedo effect. Tellus 47:281–300CrossRefGoogle Scholar
  6. Budyko MI (1969) The effect of solar radiation variations on the climate of the earth. Tellus 21:611–619CrossRefGoogle Scholar
  7. Byrne MP and O’Gorman PA (2013) Land–ocean contrast over a wide range of climates: convective quasi-equilibrium theory and idealized simulations. J Clim (in press)Google Scholar
  8. Cnossen I, Lu H, Bell CJ, Gray LJ, Joshi MM (2011) Solar signal propagation: the role of gravity waves and stratospheric sudden warmings. J Geophys Res 116. doi:10.1029/2010JD014535
  9. Dommenget D, Flöter J (2011) Conceptual understanding of climate change with a globally resolved energy balance model. Clim Dyn 37:2143–2165. doi:10.1007/s00382-011-1026-0 CrossRefGoogle Scholar
  10. Dong B-W, Gregory JM, Sutton RT (2009) Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: transient adjustment. J Clim 22:3079–3097CrossRefGoogle Scholar
  11. Doutriaux-Boucher M, Webb MJ, Gregory JM, Boucher O (2009) Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys Res Lett 36:L02703. doi:10.1029/2008GL036273 CrossRefGoogle Scholar
  12. Drost F, Karoly D, Braganza K (2012) Communicating global climate change using simple indices: an update. Clim Dyn 39:989–999CrossRefGoogle Scholar
  13. Fasullo JT (2010) Robust land–ocean contrasts in energy and water cycle feedbacks. J Clim 23:4677–4693CrossRefGoogle Scholar
  14. Forster PM, De F, Blackburn M, Glover R, Shine KP (2000) An examination of climate sensitivity for idealised climate change experiments in an intermediate general circulation model. Clim Dyn 16:833–849CrossRefGoogle Scholar
  15. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  16. Groisman PY, Karl TR, Knight RW (1994) Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 263:198–200. doi:10.1126/science.263.5144.198 CrossRefGoogle Scholar
  17. Holton JR (1992) An introduction to dynamic meteorology. Academic press, San DiegoGoogle Scholar
  18. Huntingford C, Cox PM (2000) An analogue model to derive additional climate change scenarios from existing GCM simulations. Clim Dyn 16:575–586CrossRefGoogle Scholar
  19. Hwang Y-T, Frierson DMW (2010) Increasing atmospheric poleward energy transport with global warming. Geophys Res Lett 37:L24807. doi:10.1029/2010GL045440 Google Scholar
  20. Jones A, Haywood J, Boucher O (2009) Climate impacts of geoengineering marine stratocumulus clouds. J Geophys Res 114:D10106. doi:10.1029/2008JD011450 CrossRefGoogle Scholar
  21. Joshi MM, Gregory JM (2008) The dependence of the land–sea contrast in surface climate response on the nature of the forcing. Geophys Res Lett 35:L24802. doi:10.1029/2008GL036234 CrossRefGoogle Scholar
  22. Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC (2008) Mechanisms for the land–sea warming contrast exhibited by simulations of climate change. Clim Dyn 30:455–465CrossRefGoogle Scholar
  23. Kiehl J, Schneider T, Rasch P, Barth M, Wong J (2000) Radiative forcing due to sulfate aerosols from simulations with the national center for atmospheric research community climate model, version 3. J Geophys Res 105:1441–1457CrossRefGoogle Scholar
  24. Lambert FH, Allen MR (2009) Are changes in global precipitation constrained by the tropospheric energy budget? J Clim 22:499–517CrossRefGoogle Scholar
  25. Lambert FH, Chiang JCH (2007) Control of land–ocean temperature contrast by ocean heat uptake. Geophys Res Lett 34:L13704. doi:10.1029/2007GL029755 CrossRefGoogle Scholar
  26. Lambert FH, Webb MJ, Joshi MM (2011) The relationship between land–ocean surface temperature contrast and radiative forcing. J Clim 24:3239–3256CrossRefGoogle Scholar
  27. Laurian A, Drijfhout SS, Hazeleger W, Van den Hurk B (2010) Response of the Western European climate to a collapse of the thermohaline circulation. Clim Dyn 34:689–697. doi:10.1007/s00382-008-0513-4 CrossRefGoogle Scholar
  28. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737CrossRefGoogle Scholar
  29. Lu J, Cai M (2010) Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Clim Dyn 34:669–687CrossRefGoogle Scholar
  30. Manabe S, Stouffer RJ, Spelman MJ, Bryan K (1991) Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2 part I: annual mean response. J Clim 4:785–818CrossRefGoogle Scholar
  31. Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757CrossRefGoogle Scholar
  32. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCP, Watterson IG, Weaver AG, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  33. Mitchell JFB, Johns TC (1997) On modification of global warming by sulfate aerosols. J Clim 10:245–267CrossRefGoogle Scholar
  34. North GR (1975) Theory of energy-balance climate models. J Atmos Sci 32:2033–2043CrossRefGoogle Scholar
  35. North GR, Cahalan RF, Coakley JA Jr (1981) Energy balance climate models. Rev Geophys Space Phys 19:91–121CrossRefGoogle Scholar
  36. Raper SCB, Gregory JM, Stouffer RJ (2002) The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J Clim 15:124–130CrossRefGoogle Scholar
  37. Reddy K, Pant P, Phanikumar DV, Dumka UC, Kumar YB, Singh N, Joshi H (2011) Radiative effects of elevated aerosol layer in Central Himalayas. Int J Remote Sens 32:9721–9734CrossRefGoogle Scholar
  38. Rowell DP, Jones RG (2006) Causes and uncertainty of future summer drying over Europe. Clim Dyn 27:281–299. doi:10.1007/s00382-006-0125-9 CrossRefGoogle Scholar
  39. Shindell D, Faluvegi G (2009) Climate response to regional radiative forcing during the twentieth century. Nat Geosci 2:294–300CrossRefGoogle Scholar
  40. Shindell D, Schulz M, Ming Y, Takemura T, Faluvegi G, Ramaswamy V (2010) Spatial scales of climate response to inhomogeneous radiative forcing. J Geophys Res 115:D19110. doi:10.1029/2010JD014108 CrossRefGoogle Scholar
  41. Sutton RT, Dong B-W, Gregory JM (2007) Land–sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys Res Lett 34:L02701. doi:10.1029/2006GL028164 CrossRefGoogle Scholar
  42. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  43. Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang H, Yoshimori M (2001) The UVic earth system climate model: model description, climatology and application to past, present and future climates. Atmos Ocean 39:361–428CrossRefGoogle Scholar
  44. Williams KD, Jones A, Roberts DL, Senior CA, Woodage MJ (2000) The response of the climate system to the indirect effects of anthropogenic aerosol. Clim Dyn 17:845–856CrossRefGoogle Scholar
  45. Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036. doi:10.1029/2003JC002260 CrossRefGoogle Scholar
  46. Yoshimori M, Broccoli AJ (2008) Equilibrium response of an atmosphere-mixed layer ocean model to different radiative forcing agents: global and zonal mean response. J Clim 21:4399–4423. doi:10.1175/2008JCLI2172.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.NCAS Climate, Department of MeteorologyUniversity of ReadingReadingUK
  2. 2.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
  3. 3.Met Office Hadley CentreExeterUK
  4. 4.Department of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations