Skip to main content

Another Record: Ocean Warming Continues through 2021 despite La Niña Conditions

Abstract

The increased concentration of greenhouse gases in the atmosphere from human activities traps heat within the climate system and increases ocean heat content (OHC). Here, we provide the first analysis of recent OHC changes through 2021 from two international groups. The world ocean, in 2021, was the hottest ever recorded by humans, and the 2021 annual OHC value is even higher than last year’s record value by 14 ± 11 ZJ (1 zetta J = 1021 J) using the IAP/CAS dataset and by 16 ± 10 ZJ using NCEI/NOAA dataset. The long-term ocean warming is larger in the Atlantic and Southern Oceans than in other regions and is mainly attributed, via climate model simulations, to an increase in anthropogenic greenhouse gas concentrations. The year-to-year variation of OHC is primarily tied to the El Niño-Southern Oscillation (ENSO). In the seven maritime domains of the Indian, Tropical Atlantic, North Atlantic, Northwest Pacific, North Pacific, Southern oceans, and the Mediterranean Sea, robust warming is observed but with distinct inter-annual to decadal variability. Four out of seven domains showed record-high heat content in 2021. The anomalous global and regional ocean warming established in this study should be incorporated into climate risk assessments, adaptation, and mitigation.

References

  1. Abraham, J., J. R. Stark, and W. J. Minkowycz, 2015: Briefing: Extreme weather: Observed Precipitation Changes in the USA. Proceedings of the Institution of Civil Engineers-Forensic Engineering, 168, 68–70, https://doi.org/10.1680/feng.14.00015.

    Google Scholar 

  2. Abraham, J., L. J. Cheng, and M. E. Mann, 2017: Briefing: Future climate projections allow engineering planning. Forensic Engineering, Proceedings of the Institution of Civil Engineers, 170, 54–57. https://doi.org/10.1680/jfoen.17.00002.

    Google Scholar 

  3. Abram, N., and Coauthors, 2019: Framing and context of the report. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., Intergovernmental Panel on Climate Chang, in press.

  4. Argo, 2020: Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC). SEANOE. Available from https://doi.org/10.17882/42182.

    Google Scholar 

  5. Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9(7), 549–554, https://doi.org/10.1038/Ngeo2731.

    Google Scholar 

  6. Ben Ismail S., K. Schroeder, J. Chiggiato, S. Sparnocchia, and M. Borghini, 2021: Long term changes monitored in two Mediterranean Channels. Copernicus Marine Service Ocean State Report, Issue 5, K. von Schuckmann et al., Eds., 48–52, https://doi.org/10.1080/1755876X.2021.1946240.

    Google Scholar 

  7. Boers, N., 2021: Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nature Climate Change, 11, 680–688, https://doi.org/10.1038/s41558-021-01097-4.

    Google Scholar 

  8. Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience, 1(12), 864–869, https://doi.org/10.1038/ngeo362.

    Google Scholar 

  9. Boyer, T. P., and Coauthors, 2018: World Ocean Database 2018. A. V. Mishonov, Technical Editor, NOAA Atlas NESDIS 87.

  10. Cheng, L., Zhu, J., Cowley, R., Boyer, T., & Wijffels, S., 2014: Time, Probe Type, and Temperature Variable Bias Corrections to Historical Expendable Bathythermograph Observations. Journal of Atmospheric and Oceanic Technology, 31(8), 1793–1825, https://doi.org/10.1175/JTECH-D-13-00197.1.

    Google Scholar 

  11. Cheng, L. J., J. Abraham, Z. Hausfather, and K. E. Trenberth, 2019a: How fast are the oceans warming.. Science, 363, 128–129, https://doi.org/10.1126/science.aav7619.

    Google Scholar 

  12. Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    Google Scholar 

  13. Cheng, L. J., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019b: Evolution of ocean heat content related to ENSO. J. Climate, 32(12), 3529–3556, https://doi.org/10.1175/JCLI-D-18-0607.1.

    Google Scholar 

  14. Cheng, L. J., K. Trenberth, J. Fasullo, J. Abraham, T. Boyer, K. von Schuckmann, and J. Zhu, 2018: Taking the pulse of the planet. Eos, 99, 14–16, https://doi.org/10.1029/2017EO081839.

    Google Scholar 

  15. Cornwall, W., 2019: A new ‘Blob’ menaces Pacific ecosystems. Science, 365, 1233, https://doi.org/10.1126/science.365.6459.1233.

    Google Scholar 

  16. Deser, C., and Coauthors, 2020: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: A new CESM1 large ensemble community resource. J. Climate, 33(18), 7835–7858, https://doi.org/10.1175/JCLI-D-20-0123.1.

    Google Scholar 

  17. Duan, J., and Coauthors, 2021: Rapid sea level rise in the Southern Hemisphere subtropical oceans. J. Climate, 34(23), 9401–9423, https://doi.org/10.1175/JCLI-D-21-0248.1.

    Google Scholar 

  18. Emanuel, K., 2021a: Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models. J. Climate, 34(1), 57–70, https://doi.org/10.1175/JCLID-20-0367.1.

    Google Scholar 

  19. Emanuel, K., 2021b: Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years.. Nat Commun., 12, 7027, https://doi.org/10.1038/s41467-021-27364-8.

    Google Scholar 

  20. Fasullo, J. T., 2020: Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1). Geoscientific Model Development, 13, 3627–3642, https://doi.org/10.5194/gmd-13-3627-2020.

    Google Scholar 

  21. Fasullo, J. T., and R. S. Nerem, 2018: Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proceedings of the National Academy of Sciences of the United States of America, 115, 12 944–12 949, https://doi.org/10.1073/pnas.1813233115.

    Google Scholar 

  22. Fasullo, J. T., N. Rosenbloom, R. R. Buchholz, G. Danabasoglu, D. M. Lawrence, and J.-F. Lamarque, 2021: Coupled climate responses to recent Australian wildfire and COVID-19 emissions anomalies estimated in CESM2. Geophys Res. Lett., 48, e2021GL093841, https://doi.org/10.1029/2021GL093841.

    Google Scholar 

  23. Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28(2), 862–886, https://doi.org/10.1175/JCLI-D-14-00117.1.

    Google Scholar 

  24. Fyfe, J. C., V. V. Kharin, N. Swart, G. M. Flato, M. Sigmond, and N. P. Gillett, 2021: Quantifying the influence of short-term emission reductions on climate. Science Advances, 7(10), eabf7133, https://doi.org/10.1126/sciadv.abf7133.

    Google Scholar 

  25. Gao, L. B., S. R. Rintoul, and W. D. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nature Climate Change, 8(1), 58–63, https://doi.org/10.1038/s41558-017-0022-8.

    Google Scholar 

  26. Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295(5558), 1275–1277, https://doi.org/10.1126/science.1065863.

    Google Scholar 

  27. Gouretski, V., J. H. Jungclaus, and H. Haak, 2013: Revisiting the Meteor 1925–1927 hydrographic dataset reveals centennial full-depth changes in the Atlantic Ocean. Geophys. Res. Lett., 40, 2236–2241, https://doi.org/10.1002/grl.50503.

    Google Scholar 

  28. Johnson, G., and Coauthors, 2018: Ocean heat content [in State of the Climate in 2017]. Bull. Amer. Meteor. Soc., 99, S72–S77.

    Google Scholar 

  29. Hansen, J., M. Sato, P. Kharecha, and K. Von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmospheric Chemistry and Physics, 11, 13 421–13 449, https://doi.org/10.5194/acp-11-13421-2011.

    Google Scholar 

  30. Holbrook, N. J., and Coauthors, 2019: A global assessment of marine heatwaves and their drivers. Nature Communications, 10, 2624, https://doi.org/10.1038/s41467-019-10206-z.

    Google Scholar 

  31. Hu, S. N., and A. V. Fedorov, 2020: Indian Ocean warming as a driver of the North Atlantic warming hole. Nature Communications, 11, 4785, https://doi.org/10.1038/s41467-020-18522-5.

    Google Scholar 

  32. IPCC, 2013: Climate Change 2013: The physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.

    Google Scholar 

  33. IPCC, 2019: Summary for policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds. In press

    Google Scholar 

  34. IPCC, 2021: Summary for policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds., IPCC.

    Google Scholar 

  35. Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96(8), 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    Google Scholar 

  36. Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nature Climate Change, 10, 667–671, https://doi.org/10.1038/s41558-020-0819-8.

    Google Scholar 

  37. Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, 8(6), 445–449, https://doi.org/10.1038/ngeo2438.

    Google Scholar 

  38. Levitus, S., J. I. Antonov, T. P. Boyer, and C. Stephens, 2000: Warming of the world ocean. Science, 287(5461), 2225–2229, https://doi.org/10.1126/science.287.5461.2225.

    Google Scholar 

  39. Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.

    Google Scholar 

  40. Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    Google Scholar 

  41. Li, G. C., L. J. Cheng, J. Zhu, K. E. Trenberth, M. E. Mann, and J. P. Abraham, 2020a: Increasing ocean stratification over the past half-century. Nature Climate Change, 10, 1116–1123, https://doi.org/10.1038/s41558-020-00918-2.

    Google Scholar 

  42. Li, L. F., M. S. Lozier, and F. L. Li, 2021: Century-long cooling trend in subpolar North Atlantic forced by atmosphere: An alternative explanation. Climate Dyn., in press, https://doi.org/10.1007/s00382-021-06003-4.

    Google Scholar 

  43. Li, Y. L., W. Q. Han, A. X. Hu, G. A. Meehl, and F. Wang, 2018: Multi-decadal changes of the Upper Indian Ocean heat content during 1965–2016.. J Climate, 31(19), 7863–7884, https://doi.org/10.1175/JCLI-D-18-0116.1.

    Google Scholar 

  44. Li, Y. L., W. Q. Han, F. Wang, L. Zhang, and J. Duan, 2020b: Vertical structure of the Upper-Indian Ocean thermal variability. J. Climate, 33(17), 7233–7253, https://doi.org/10.1175/JCLI-D-19-0851.1.

    Google Scholar 

  45. Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5(3), 171–180, https://doi.org/10.1038/Ngeo1391.

    Google Scholar 

  46. Piecuch, C. G., 2020: Likely weakening of the Florida Current during the past century revealed by sea-level observations. Nature Communications, 11, 3973, https://doi.org/10.1038/s41467-020-17761-w.

    Google Scholar 

  47. Pinardi, N., and Coauthors, 2015: Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Progress in Oceanography, 132, 318–332, https://doi.org/10.1016/j.pocean.2013.11.003.

    Google Scholar 

  48. Purich, A., M. H. England, W. J. Cai, A. Sullivan, and P. J. Durack, 2018: Impacts of broad-scale surface freshening of the Southern Ocean in a coupled climate model. J. Climate, 31(7), 2613–2632, https://doi.org/10.1175/JCLI-D-17-0092.1.

    Google Scholar 

  49. Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 6336–6351, https://doi.org/10.1175/2010JCLI3682.1.

    Google Scholar 

  50. Purkey, S. G., and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26(16), 6105–6122, https://doi.org/10.1175/JCLI-D-12-00834.1.

    Google Scholar 

  51. Rahmstorf, S., J. E, Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475–480, https://doi.org/10.1038/nclimate2554.

    Google Scholar 

  52. Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press.

    Google Scholar 

  53. Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nature Climate Change, 5(3), 240–245. https://doi.org/10.1038/nclimate2513.

    Google Scholar 

  54. Scambos T, J. Abraham, 2015: Briefing: Antarctic ice sheet mass loss and future sea-level rise. Proceedings of the Institution of Civil Engineers — Forensic Engineering, 168, 81–84, https://doi.org/10.1680/feng.14.00014.

    Google Scholar 

  55. Scannell, H. A., G. C. Johnson, L. Thompson, J. M. Lyman, and S. C. Riser, 2020: Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett., 47, e2020GL090548, https://doi.org/10.1029/2020GL090548.

    Google Scholar 

  56. Schmidtko, S., and G. C. Johnson, 2012: Multi-decadal warming and shoaling of Antarctic intermediate water. J. Climate, 25(1), 207–221, https://doi.org/10.1175/Jcli-D-11-00021.1.

    Google Scholar 

  57. Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multi-decadal warming of Antarctic waters. Science, 346(6214), 1227–1231, https://doi.org/10.1126/science.1256117.

    Google Scholar 

  58. Schroeder, K., J. Chiggiato, S. A. Josey, M. Borghini, S. Aracri, and S. Sparnocchia, 2017: Rapid response to climate change in a marginal sea. Scientific Reports, 7, 4065, https://doi.org/10.1038/s41598-017-04455-5.

    Google Scholar 

  59. Seidov, D., A. Mishonov, and R. Parsons, 2021: Recent warming and decadal variability of Gulf of Maine and Slope Water. Limnology and Oceanography, 66, 3472–3488, https://doi.org/10.1002/lno.11892.

    Google Scholar 

  60. Seidov, D., A. Mishonov, J. Reagan, and R. Parsons, 2017: Multi-decadal variability and climate shift in the North Atlantic Ocean. Geophys. Res. Lett., 44, 4985–4993, https://doi.org/10.1002/2017GL073644.

    Google Scholar 

  61. Seidov, D., A. Mishonov, J. Reagan, and R. Parsons, 2019: Resilience of the Gulf Stream path on decadal and longer timescales. Scientific Reports, 9, 11549, https://doi.org/10.1038/s41598-019-48011-9.

    Google Scholar 

  62. Silvy, Y., E. Guilyardi, J. B. Sallée, and P. J. Durack, 2020: Human-induced changes to the global ocean water masses and their time of emergence. Nature Climate Change, 10(11), 1030–1036, https://doi.org/10.1038/s41558-020-0878-x.

    Google Scholar 

  63. Simoncelli, S., C. Fratianni, and G. Mattia, 2019: Monitoring and long-term assessment of the Mediterranean Sea physical state through ocean reanalyses. INGV Workshop on Marine Environment, L. Sagnotti et al., Eds., Rome, IVGV, 62–64, https://doi.org/10.13127/misc/51.

    Google Scholar 

  64. Simoncelli, S., N. Pinardi, C. Fratianni, C. Dubois, and G. Notarstefano, 2018: Water mass formation processes in the Mediterranean Sea over the past 30 years. Copernicus Marine Service Ocean State Report, Issue 2. K. von Schuckmann et al., Eds., s96–s100, https://doi.org/10.1080/1755876X.2018.1489208.

    Google Scholar 

  65. Smith, C. J., and P. M. Forster, 2021: Suppressed late-20th Century warming in CMIP6 models explained by forcing and feedbacks. Geophys. Res. Lett., 48, e2021GL094948, https://doi.org/10.1029/2021GL094948.

    Google Scholar 

  66. Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577–580, https://doi.org/10.1038/nature05785.

    Google Scholar 

  67. Storto, A., and Coauthors, 2019: The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product. Climate Dyn., 53, 287–312, https://doi.org/10.1007/s00382-018-4585-5.

    Google Scholar 

  68. Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11(11), 836–841, https://doi.org/10.1038/s41561-018-0226-1.

    Google Scholar 

  69. Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 3129–3144, https://doi.org/10.1175/JCLI-D-13-00294.1.

    Google Scholar 

  70. Trenberth, K. E., A. G. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84(9), 1205–1218, https://doi.org/10.1175/BAMS-84-9-1205.

    Google Scholar 

  71. Trenberth, K. E., J. T. Fasullo, K. von Schuckmann, and L. J. Cheng, 2016: Insights into Earth’s energy imbalance from multiple sources. J. Climate, 29, 7495–7505, https://doi.org/10.1175/JCLI-D-16-0339.1.

    Google Scholar 

  72. Trenberth, K. E., L. J. Cheng, P. Jacobs, Y. X. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future, 6, 730–744, https://doi.org/10.1029/2018EF000825.

    Google Scholar 

  73. Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res.: Oceans, 103, 14 291–14 324, https://doi.org/10.1029/97JC01444.

    Google Scholar 

  74. Ummenhofer, C. C., S. Ryan, M. H. England, M. Scheinert, P. Wagner, A. Biastoch, and C. W. Böning, 2020: Late 20th century Indian Ocean heat content gain masked by wind forcing. Geophys. Res. Lett., 47(22), e2020GL088692, https://doi.org/10.1029/2020GL088692.

    Google Scholar 

  75. Ummenhofer, C. C., S. A. Murty, J. Sprintall, T. Lee, and N. J. Abram, 2021: Heat and freshwater changes in the Indian Ocean region. Nature Reviews Earth & Environment, 2(8), 525–541, https://doi.org/10.1038/s43017-021-00192-6.

    Google Scholar 

  76. United Nations, 2021: Sustainable Development Goals. Available from https://sdgs.un.org/goals.

    Google Scholar 

  77. Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014–2018. Science Advances, 6(36), eabc1151, https://doi.org/10.1126/sciadv.abc1151.

    Google Scholar 

  78. von Schuckmann, K., E. Holland, P. Haugan, and P. Thomson, 2020a: Ocean science, data, and services for the UN 2030 Sustainable Development Goals. Marine Policy, 121, 104154, https://doi.org/10.1016/j.marpol.2020.104154.

    Google Scholar 

  79. von Schuckmann, K., and Coauthors, 2016a: An imperative to monitor Earth’s energy imbalance. Nature Climate Change, 6, 138–144, https://doi.org/10.1038/nclimate2876.

    Google Scholar 

  80. von Schuckmann, K., and Coauthors, 2016b: The Copernicus marine environment monitoring service ocean state report. Journal of Operational Oceanography, 9, s235–s320, https://doi.org/10.1080/1755876X.2016.1273446.

    Google Scholar 

  81. von Schuckmann, K., and Coauthors, 2020b: Heat stored in the Earth system: Where does the energy go.. Earth System Science Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020.

    Google Scholar 

  82. Wang, C. Z., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 5119–5136, https://doi.org/10.1007/s00382-019-04930-x.

    Google Scholar 

  83. Wang, X. D., C. Z. Wang, G. J. Han, W. Li, and X. R. Wu, 2014: Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea. Climate Dyn., 43, 3351–3366, https://doi.org/10.1007/s00382-014-2109-5.

    Google Scholar 

  84. Wijffels, S., D. Roemmich, D. Monselesan, J. Church, and J. Gilson, 2016: Ocean temperatures chronicle the ongoing warming of Earth. Nature Climate Change, 6, 116–118, https://doi.org/10.1038/nclimate2924.

    Google Scholar 

  85. Xiao, F. A., D. X. Wang, and L. Yang, 2020: Can tropical Pacific winds enhance the footprint of the Interdecadal Pacific Oscillation on the upper-ocean heat content in the South China Sea. J. Climate, 33(10), 4419–4437, https://doi.org/10.1175/JCLI-D-19-0679.1.

    Google Scholar 

  86. Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15(8), 864–878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI2.0.CO;2.

    Google Scholar 

  87. Yang, L., S. Chen, C. Z. Wang, D. X. Wang, and X. Wang, 2018: Potential impact of the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean-Western Pacific on the variability of typhoon landfall on the China coast. Climate Dyn., 51, 2695–2705, https://doi.org/10.1007/s00382-017-4037-7.

    Google Scholar 

  88. Yang, L. N., R. Murtugudde, L. Zhou, and P. Liang, 2020: A potential link between the Southern Ocean warming and the South Indian Ocean heat balance. J. Geophys. Res.: Oceans, 125(12), e2020JC016132, https://doi.org/10.1029/2020JC016132.

    Google Scholar 

Download references

Acknowledgements

The IAP/CAS analysis is supported by the National Natural Science Foundation of China (Grant No. 42122046, 42076202), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB42040402), National Natural Science Foundation of China (Grant No. 42076202), National Key R&D Program of China (Grant No. 2017YFA0603202), and Key Deployment Project of Centre for Ocean Mega-Research of Science, CAS (Grant Nos. COMS2019Q01 and COMS2019Q07). NCAR is sponsored by the US National Science Foundation. The efforts of Dr. Fasullo in this work were supported by NASA Award 80NSSC17K0565, and by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1844590. The efforts of Dr. Mishonov and Mr. Reagan were partially supported by NOAA (Grant NA14NES4320003 to CISESSMD at the University of Maryland). The IAP/CAS data are available at http://www.ocean.iap.ac.cn/ and https://msdc.qdio.ac.cn/. The NCEI/NOAA data are available at https://www.ncei.noaa.gov/products/climate-data-records/global-ocean-heat-content. The historical XBT data along the MX04 line (Genova-Palermo) are available through SeaDataNet - Pan-European infrastructure (http://www.seadatanet.org) for ocean and marine data management. Since 2021, XBT data have been collected in the framework of the MACMAP project funded by the Istituto Nazionale di Geofisica e Vulcanologia in agreement between INGV, ENEA, and GNV SpA shipping company that provides hospitality on their commercial vessels.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lijing Cheng.

Additional information

Article Highlights

• The world ocean, in 2021, was the hottest ever recorded by humans.

• The warming pattern is mainly attributed to increased anthropogenic greenhouse gas concentrations, offset by the impact of aerosols.

• Ocean warming has far-reaching consequences and should be incorporated into climate risk assessments, adaptation, and mitigation.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author (s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Abraham, J., Trenberth, K.E. et al. Another Record: Ocean Warming Continues through 2021 despite La Niña Conditions. Adv. Atmos. Sci. (2022). https://doi.org/10.1007/s00376-022-1461-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00376-022-1461-3

Key words

  • La Niña
  • ocean heat
  • ocean warming
  • attribution
  • observation