Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 6, pp 589–602 | Cite as

Evidence of Specific MJO Phase Occurrence with Summertime California Central Valley Extreme Hot Weather

  • Yun-Young Lee
  • Richard GrotjahnEmail author
Open Access
Original Paper

Abstract

This study examines associations between California Central Valley (CCV) heat waves and the Madden Julian Oscillation (MJO). These heat waves have major economic impact. Our prior work showed that CCV heat waves are frequently preceded by convection over the tropical Indian and eastern Pacific oceans, in patterns identifiable with MJO phases. The main analysis method is lagged composites (formed after each MJO phase pair) of CCV synoptic station temperature, outgoing longwave radiation (OLR), and velocity potential (VP). Over the CCV, positive temperature anomalies occur only after the Indian Ocean (phases 2–3) or eastern Pacific Ocean (phases 8–1) convection (implied by OLR and VP fields). The largest fractions of CCV hot days occur in the two weeks after onset of those two phase pairs. OLR and VP composites have significant subsidence and convergence above divergence over the CCV during heat waves, and these structures are each part of larger patterns having significant areas over the Indian and Pacific Oceans. Prior studies showed that CCV heat waves can be roughly grouped into two clusters: Cluster 2 is preceded by a heat wave over northwestern North America, while Cluster 1 is not. OLR and VP composite analyses are applied separately to these two clusters. However, for Cluster 2, the subsidence and VP over the CCV are not significant, and the large-scale VP pattern has low correlation with the MJO lagged composite field. Therefore, the association between the MJO convection and subsequent CCV heat wave is more evident in Cluster 1 than Cluster 2.

Key words

MJO heat wave large-scale meteorological pattern extratropical response tropical convection 

摘 要

本研究探讨了加利福尼亚州中央山谷(CCV)热浪和MJO之间的关系. 这些热浪事件对经济有着重要的影响. 我们之前的研究表明在发生CCV热浪之前, 在热带印度洋和东太平洋上空通常会有对流活动, 表现为MJO位相. 本文所用的主要分析方法为滞后合成分析方法, 即研究每个MJO位相对发生后CCV台站温度, 向外长波辐射(OLR)和速度势(VP)的演变过程. 从OLR和VP的分析结果可以看出, CCV的温度正异常仅仅出现在印度洋(位相2-3)和东太平洋(位相8-1)对流发生之后. CCV极端高温日数也出现在上述两个位相对发生后的两周内. 在热浪事件出现期间, CCV上空呈现低层辐散高层辐合并且伴有显著的下沉运动, 这种结构也是位于印太海洋上空大尺度环流型的一部分. 以往的研究表明CCV热浪可粗略的分为两类, 第二类发生在北美西北部热浪之后, 然而第一类却不是. 我们用OLR和VP的合成分析方法分别分析这两种CCV热浪类型. 对于第二类热浪, 在CCV的下沉运动并不显著, 并且大尺度VP型与MJO滞后合成场之间的相关系数很小. 因此, 第一类CCV热浪呈现出比第二类更强的与前期MJO对流之间的联系.

关键词

MJO 热浪 大尺度环流型 赤道外响应 热带对流 

Notes

Acknowledgements

This research was funded in part by the NSF (Grant No. 1236681), NASA (Grant No. NNX16AG62G), the Department of Energy Office of Science (Award No. DE-SC0016605), and the USDA National Institute of Food and Agriculture, Hatch project Accession #1010971. This research was also supported by the Asia-Pacific Economic Cooperation Climate Center in the Republic of Korea.

Supplementary material

376_2019_8167_MOESM1_ESM.pdf (829 kb)
Electronic Supplementary Material to: Evidence of Specific MJO Phase Occurrence with Summertime California Central Valley Extreme Hot Weather

References

  1. Alexander, L. V., P. Uotila, and N. Nicholls, 2009: Influence of sea surface temperature variability on global temperature and precipitation extremes. J. Geophys. Res.: Atmos. 114, D18116,  https://doi.org/10.1029/2009JD012301.CrossRefGoogle Scholar
  2. Brown, S. J., J. Caesar, and C. A. T. Ferro, 2008: Global changes in extreme daily temperature since 1950. J. Geophys. Res.: Atmos 113, D05115,  https://doi.org/10.1029/2006JD008091.CrossRefGoogle Scholar
  3. Cellitti, M. P., J. E. Walsh, R. M. Rauber, and D. H. Portis, 2006: Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J. Geophys. Res.: Atmos., 111, D02114,  https://doi.org/10.1029/2005JD006273.CrossRefGoogle Scholar
  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597,  https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  5. Downton, M. W., and K. A. Miller, 1993: The freeze risk to Florida citrus. Part II: Temperature variability and circulation patterns. J. Climate, 6, 364–372,  https://doi.org/10.1175/1520-0442(1993)006<0364:TFRTFC>2.0.CO;2.CrossRefGoogle Scholar
  6. Gershunov, A., D. R. Cayan, and S. F. Iacobellis, 2009: The great 2006 heat wave over California and Nevada: Signal of an increasing trend. J. Climate, 22, 6181–6203,  https://doi.org/10.1175/2009JCLI2465.1.CrossRefGoogle Scholar
  7. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462,  https://doi.org/10.1002/qj.49710644905.CrossRefGoogle Scholar
  8. Grotjahn, R., 2011: Identifying extreme hottest days from large scale upper air data: A pilot scheme to find California Central Valley summertime maximum surface temperatures. Climate Dyn., 37, 587–604,  https://doi.org/10.1007/s00382-011-0999-z.CrossRefGoogle Scholar
  9. Grotjahn, R., 2013: Ability of CCSM4 to simulate California extreme heat conditions from evaluating simulations of the associated large scale upper air pattern. Climate Dyn., 41, 1187–1197,  https://doi.org/10.1007/s00382-013-1668-1.CrossRefGoogle Scholar
  10. Grotjahn, R., 2016: Western North American extreme heat, associated large scale synoptic-dynamics, and performance by a climate model. Dynamics and Predictability of Large-Scale High-Impact Weather and Climate Events, J. P. Li et al., Eds., Cambridge University Press, Cambridge. 198–209.CrossRefGoogle Scholar
  11. Grotjahn, R., and M. Osman, 2007: Remote weather associated with North Pacific subtropical sea level high properties. International Journal of Climatology, 27, 587–602,  https://doi.org/10.1002/joc.1423.CrossRefGoogle Scholar
  12. Grotjahn, R., and G. Faure, 2008: Composite predictor maps of extraordinary weather events in the Sacramento, California, Region. Wea. Forecasting, 23, 313–335,  https://doi.org/10.1175/2007WAF2006055.1.CrossRefGoogle Scholar
  13. Grotjahn, R., and Coauthors, 2016: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 1151–1184,  https://doi.org/10.1007/s00382-015-2638-6.CrossRefGoogle Scholar
  14. Guirguis, K., A. Gershunov, R. Schwartz, and S. Bennett, 2011: Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys. Res. Lett., 38, L17701,  https://doi.org/10.1029/2011GL048762.CrossRefGoogle Scholar
  15. Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10, 223–244,  https://doi.org/10.1175/1520-0442(1997)010<0223:PNPCAA>2.0.CO;2.CrossRefGoogle Scholar
  16. Higgins, R. W., A. Leetmaa, and V. E. Kousky, 2002: Relationships between climate variability and winter temperature extremes in the United States. J. Climate, 15, 1555–1572,  https://doi.org/10.1175/1520-0442(2002)015<1555:RBCVAW>2.0.CO;2.CrossRefGoogle Scholar
  17. Hong, C.-C., and T. Li, 2009: The extreme cold anomaly over Southeast Asia in february 2008: Roles of ISO and ENSO. J. Climate, 22, 3786–3801,  https://doi.org/10.1175/2009JCLI2864.1.CrossRefGoogle Scholar
  18. Hoskins, B. J., 1996: On the existence and strength of the summer subtropical anticyclones. Bernhard Haurwitz memorial lecture. Bull. Amer. Meteorol. Soc., 77, 1287–1292.Google Scholar
  19. Hoskins, B., R. Neale, M. Rodwell, and G.-Y. Yang, 1999: Aspects of the large-scale tropical atmospheric circulation. Tellus B, 51, 33–44,  https://doi.org/10.3402/tellusb.v51i1.16258.CrossRefGoogle Scholar
  20. Jeong, J.-H., C.-H. Ho, B.-M. Kim, and W.-T. Kwon, 2005: Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res: Atmos., 110, D11104,  https://doi.org/10.1029/2004JD005408.CrossRefGoogle Scholar
  21. Jeong, J.-H., B.-M. Kim, C.-H. Ho, and Y.-H. Noh, 2008: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Climate, 21, 788–801,  https://doi.org/10.1175/2007JCLI180L1.CrossRefGoogle Scholar
  22. Jin, F. F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307–319,  https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.CrossRefGoogle Scholar
  23. Jones, C., J. Gottschalck, L. M. V. Carvalho, and W. Higgins, 2011: Influence of the Madden-Julian Oscillation on forecasts of extreme precipitation in the contiguous United States. Mon. Wea. Rev., 139, 332–350,  https://doi.org/10.1175/2010MWR3512.1.CrossRefGoogle Scholar
  24. Kenyon, J., and G. C. Hegerl, 2008: Influence of modes of climate variability on global temperature extremes. J. Climate, 21, 3872–3889,  https://doi.org/10.1175/2008JCLI2125.1.CrossRefGoogle Scholar
  25. Kiladis, G. N., and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 1900–1923,  https://doi.org/10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.CrossRefGoogle Scholar
  26. Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A Comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 1697–1715,  https://doi.org/10.1175/MWR-D-13-0030L1.CrossRefGoogle Scholar
  27. Lau, K.-M., and T. J. Phillips, 1986: Coherent fluctuations of fxtratropical geopotential height and tropical convection in in-traseasonal time scales. J. Atmos. Sci., 43, 1164–1181,  https://doi.org/10.1175/1520-0469(1986)043<1164:CFOFGH>2.0.CO;2.CrossRefGoogle Scholar
  28. Lee, H.-T., A. Gruber, R. G. Ellingson, and I. Laszlo, 2007: Development of the HIRS outgoing longwave radiation climate dataset. J. Atmos. Oceanic Technol., 24, 2029–2047,  https://doi.org/10.1175/2007JTECHA989.1.CrossRefGoogle Scholar
  29. Lee, Y.-Y., and R. X. Black, 2013: Boreal winter low-frequency variability in CMIP5 models. J. Geophys. Res.: Atmos. 118, 6891–6904,  https://doi.org/10.1002/jgrd.50493.Google Scholar
  30. Lee, Y.-Y., and R. Grotjahn, 2016: California central valley summer heat waves form two ways. J. Climate, 29, 1201–1217,  https://doi.org/10.1175/JCLI-D-15-0270.1.CrossRefGoogle Scholar
  31. Lim, Y.-K., and S. D. Schubert, 2011: The impact of ENSO and the Arctic Oscillation on winter temperature extremes in the southeast United States. Geophys. Res. Lett., 38, L15706,  https://doi.org/10.1029/2011GL048283.CrossRefGoogle Scholar
  32. Lin, H., and G. Brunet, 2009: The influence of the Madden-Julian oscillation on Canadian wintertime surface air temperature. Mon. Wea. Rev., 137, 2250–2262,  https://doi.org/10.1175/2009MWR2831.1.CrossRefGoogle Scholar
  33. Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic oscillation and the Madden-Julian Oscillation. J. Climate, 22, 364–380,  https://doi.org/10.1175/2008JCLI2515.1.CrossRefGoogle Scholar
  34. Lin, H., G. Brunet, and R. P. Mo, 2010: Impact of the Madden-Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 3822–3839,  https://doi.org/10.1175/2010MWR3363.1.CrossRefGoogle Scholar
  35. Loikith, P. C., and A. J. Broccoli, 2014: The influence of recurrent modes of climate variability on the occurrence of winter and summer extreme temperatures over North America. J. Climate, 27, 1600–1618,  https://doi.org/10.1175/JCLI-D-13-00068.1.CrossRefGoogle Scholar
  36. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123,  https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.CrossRefGoogle Scholar
  37. Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation-A review. Mon. Wea. Rev., 122, 814–837,  https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.CrossRefGoogle Scholar
  38. Matsueda, S., and Y. Takaya, 2015: The global influence of the Madden-Julian oscillation on extreme temperature events. J. Climate, 28, 4141–4151,  https://doi.org/10.1175/JCLI-D-14-00625.1.CrossRefGoogle Scholar
  39. Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Japan Ser. II, 44, 25–43,  https://doi.org/10.2151/jmsj1965.44.1_25.CrossRefGoogle Scholar
  40. Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden-Julian oscillation during the northern winter. Quart. J. Roy. Meteorol. Soc., 130, 1991–2011,  https://doi.org/10.1256/qj.02.123.CrossRefGoogle Scholar
  41. Meehl, G. A., and H. Y. Teng, 2007: Multi-model changes in El Nino teleconnections over North America in a future warmer climate. Climate Dyn., 29, 779–790,  https://doi.org/10.1007/s00382-007-0268-3.CrossRefGoogle Scholar
  42. Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 1133–1149,  https://doi.org/10.1007/s00382-010-0902-3.CrossRefGoogle Scholar
  43. Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteorol. Soc. Japan Ser. II, 86, 213–236,  https://doi.org/10.2151/jmsj.86.213.CrossRefGoogle Scholar
  44. Palipane, E., and R. Grotjahn, 2018: Future projections of the large-scale meteorology associated with California heat waves in CMIP5 models. J. Geophys. Res.: Atmos. 123, 8500–8517,  https://doi.org/10.1029/2018JD029000.Google Scholar
  45. Schreck, C. J., J. M. Cordeira, and D. Margolin, 2013: Which MJO events affect North American temperatures? Mon. Wea. Rev., 141, 3840–3850,  https://doi.org/10.1175/MWR-D-13-00118.1.CrossRefGoogle Scholar
  46. Sillmann, J., M. Croci-Maspoli, M. Kallache, and R. W. Katz, 2011: Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. J. Climate, 24, 5899–5913,  https://doi.org/10.1175/2011JCLI4075.1.CrossRefGoogle Scholar
  47. Tyrrell, G. C., D. J. Karoly, and J. L. McBride, 1996: Links between tropical convection and variations of the extratropical circulation during TOGA COARE. J. Atmos. Sci., 53, 2735–2748,  https://doi.org/10.1175/1520-0469(1996)053<2735:LBTCAV>2.0.CO;2.CrossRefGoogle Scholar
  48. Walsh, J. E., A. S. Phillips, D. H. Portis, and W. L. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948–99. J. Climate, 14, 2642–2658,  https://doi.org/10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2.CrossRefGoogle Scholar
  49. Wang, S. G., D. Ma, A. H. Sobel, and M. K. Tippett, 2018: Propagation characteristics of BSISO indices. Geophys. Res. Lett., 45(18), 9934–9943,  https://doi.org/10.1029/2018GL078321.CrossRefGoogle Scholar
  50. Wettstein, J. J., and L. O. Mearns, 2002: The influence of the North Atlantic-Arctic Oscillation on mean, variance, and extremes of temperature in the Northeastern United States and Canada. J. Climate, 15, 3586–3600,  https://doi.org/10.1175/1520-0442(2002)015<3586:TIOTNA>2.0.CO;2.CrossRefGoogle Scholar
  51. Wheeler, M. C., and H. H. Hendon, 2004: An all-season realtime multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.CrossRefGoogle Scholar
  52. Wheeler, M. C., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the Madden-Julian oscillation on Australian rainfall and circulation. J. Climate, 22, 1482–1498,  https://doi.org/10.1175/2008JCLI2595.1.CrossRefGoogle Scholar
  53. Zhang, C. D., 2005: Madden-julian oscillation. Rev. Geophys., 43, RG2003,  https://doi.org/10.1029/2004RG000158.Google Scholar
  54. Zhou, S. T., M. L’Heureux, S. Weaver, and A. Kumar, 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Climate Dyn., 38, 1459–1471,  https://doi.org/10.1007/s00382-011-1001-9.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.Asia-Pacific Economic Cooperation Climate CenterBusanSouth Korea
  2. 2.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA

Personalised recommendations