Skip to main content
Log in

Soil microbial response following wildfires in thermic oak-pine forests

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The ecosystem response to wildfire is often linked to fire severity, with potentially large consequences for belowground biogeochemistry and microbial processes. While the impacts of wildfire on belowground processes are generally well documented, it remains unclear how fire affects the fine-scale composition of microbial communities. Here, we investigate the composition of soil bacterial and fungal communities in burned and unburned forests in an attempt to better understand how these diverse communities respond to wildfire. We explored the belowground responses to three wildfires in Linville Gorge, NC, USA. Wildfires generally increased soil carbon content while simultaneously reducing soil respiration. We employed amplicon sequencing to describe soil microbial communities and found that fires decreased both bacterial and fungal diversity. In addition, wildfires resulted in significant shifts in both bacterial and fungal community composition. Bacterial phylum-level distributions in response to fire were mixed without clear patterns, with members of Acidobacteria being representative of both burned and unburned sites. Fungal communities showed consistent increases in Ascomycota dominance and concurrent decreases in Basidiomycota and Zygomycota dominance in response to burning. Indicator species analysis confirmed shift to Ascomycota in burned sites. These shifts in microbial communities may reflect differences in the quality and quantity of soil organic matter following wildfires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abatzoglou JT, Williams PA (2016) Impact of anthropogenic climate change on wildfire across western US forests. PNAS 113:11770–11775

    Article  CAS  Google Scholar 

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Asemaninejad A, Thorn RG, Lindo Z (2016) Experimental climate change modifies degradative succession in boreal peatland fungal communities. Microb Ecol 73:521–531

    Article  Google Scholar 

  • Axelrood PE, Chow ML, Radomski CC, McDermott JM, Davies J (2002) Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can J Microbiol 48:655–674

    Article  CAS  Google Scholar 

  • Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–552

    Article  CAS  Google Scholar 

  • Banning NC, Murphy DV (2008) Effect of heat-induced disturbance on microbial biomass and activity in forest soil and the relationship between disturbance effects and microbial community structure. Appl Soil Ecol 40:109–119

    Article  Google Scholar 

  • Bers K, Sniegowski K, Albers P, Breugelmans P, Hendrickx L, De Mot R, Springael D (2011) A molecular toolbox to estimate the number and diversity of Variovorax in the environment: application in soils treated with the phenylurea herbicide linuron. FEMS Microbiol Ecol 76:14–25

    Article  CAS  Google Scholar 

  • Boerner REJ, Brinkman JA, Smith A (2005) Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest. Soil Biol Biochem 37:1419–1426

    Article  CAS  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST (2004) A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob Chang Biol 10(10):1756–1766

    Article  Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635

    Article  CAS  Google Scholar 

  • Buckley DH, Huangyutitham V, Nelson TA, Rumberger A, Thies JE (2006) Diversity of planctomycetes in soil in relation to soil history and environmental heterogeneity. App Environ Microbiol 72:4522–4531

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108:4516–4522

    Article  Google Scholar 

  • Carini R, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. (2016) Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nature Microbiology https://doi.org/10.1038/nmicrobiol.2016.242

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10

    Article  Google Scholar 

  • Choromanska U, DeLuca TH (2001) Prescribed fire alters the impact of wildfire on biochemical properties in a ponderosa pine forest. SSSAJ 65:232–238

    Article  CAS  Google Scholar 

  • Choromanska U, DeLuca TH (2002) Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biol Biochem 34:263–271

    Article  CAS  Google Scholar 

  • Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR (2007).Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229-240.

    Article  CAS  Google Scholar 

  • Cisneros-Dozal LM, Trumbore S, Hanson P (2006) Partitioning sources of soil-respired CO2 and their seasonal variation using a unique radiocarbon tracer. Glob Chang Biol 12:194–204

    Article  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  Google Scholar 

  • DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. New York: Wiley; 1998

  • Deng S, Popova IE, Dick L, Dick R (2013) Bench scale and microplate format assay of soil enzyme activities using spectroscopic and fluorometric approaches. Appl Soil Ecol 64:84–90

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  Google Scholar 

  • Dooley SR, Treseder KK (2012) The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109:49–61

    Article  Google Scholar 

  • Dove N, Hart S (2017) Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol 13:37–65

    Article  Google Scholar 

  • Dufrêne M, Legedre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Dumas S, Neufeld HS, Melany CF (2007) Fire in a thermic oak-pine forest in Linville Gorge Wilderness Area, North Carolina: importance of the shrub layer to ecosystem response. Castanea 72:92–104

    Article  Google Scholar 

  • Dunn PH, Barro SC, Poth M (1985) Soil moisture affects survival of microorganisms in heated chaparral soil. Soil Biol Biochem 17:143–148

    Article  Google Scholar 

  • Fernández-González AJ, Martínez-Hidalgo P, Cobo-Díaz JF, Villadas PJ, Martínez-Molina E, Toro N, Tringe SG, Fernández-López M (2017) The rhizosphere microbiome of burned holm-oak: potential role of the genus Arthrobacter in the recovery of burned soils. Sci Rep 7:6008

    Article  CAS  Google Scholar 

  • Ginzburg O, Steinberger Y (2012) Effects of forest wildfire on soil microbial community activity and chemical components on a temporal-seasonal scale. Plant Soil 360:243–257

    Article  CAS  Google Scholar 

  • González-Pérez JA, Gonzalez-Vila GA, Gonzalo A, Knicker H (2004) The effect of fire on soil organic matter—a review. Environ Int 30:855–870

    Article  CAS  Google Scholar 

  • Hamman ST, Burke IC, Stromberger ME (2007) Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biol Biochem 39:1703–1711

    Article  CAS  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Hart SC, DeLuca TH, Newman SG, MacKenzie MD, Boyle SI (2005) Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manag 220:166–184

    Article  Google Scholar 

  • Hernandez T, Garcia C, Reinhardt I (1997) Short-term effect of wildfire on the chemical, biochemical and microbiological wildfire effects on boreal soil Fungi 45 properties of Mediterranean pine forest soils. Biol Fertil Soils 25:109–116

    Article  CAS  Google Scholar 

  • Holden SR, Treseder KK (2013) A meta-analysis of soil microbial biomass responses to forest disturbances. Front Microbiol 4:163

    Article  Google Scholar 

  • Holden SR, Rogers BM, Treseder KK, Randerson JT (2016) Fire severity influences the response of soil microbes to a boreal forest fire. Environ Res Lett 11:035004

    Article  CAS  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  CAS  Google Scholar 

  • Knight D (2006) Soil survey of Burke County, North Carolina. United States Department of Agriculture, Natural Resources Conservation Service

  • Knoepp JD, Vose JM, Swank WT (2004) Long-term soil responses to site preparation burning in the southern Appalachians. For Sci 50:540–550

    Google Scholar 

  • Knoepp JD, DeBano LF, Neary DG (2005) Soil chemistry. In: Neary DG, Ryan KC, DeBano LF (eds) Wildland fire in ecosystem; effect of fire on soils and water. General Technical Report RMRS-GTR 42-4, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT, pp 53–71

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  Google Scholar 

  • Lentile LB, Holden ZA, Smith AMS, Falkowski MJ, Hudak AT, Morgan P, Lewis SA, Gessler PE, Benson NC (2006) Remote sensing techniques to assess active fire characteristics and post-fire effects. Int J Wildland Fire 15:319–345

    Article  Google Scholar 

  • Lingens F, Blecher R, Blecher H, Blobel F, Eberspächer J, Fröhner C et al (1985) Phenylobacterium immobile gen. Nov., sp. Nov., a gram-negative bacterium that degrades the herbicide chloridazon. Int J Syst Bacteriol 35:26–39

    Article  CAS  Google Scholar 

  • Lumley RTC, Gignac D, Currah RS (2001) Microfungus communities of white spruce and trembling aspen logs at different stages of decay in disturbed and undisturbed sites in the boreal mixedwood region of Alberta. Can J Bot 79(1):76–92

    Google Scholar 

  • Madritch MD, Donaldson JR, Lindroth RL (2007) Canopy herbivory can mediate the influence of plant genotype on soil processes through frass deposition. Soil Biol Biochem 39:1192–1201

    Article  CAS  Google Scholar 

  • Martin M (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  • McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of micro-biome census data. PLoS One 8(4):e61217

    Article  CAS  Google Scholar 

  • Menkis A, Urbina H, James TY, Rosling A (2014) Archaeorhizomyces borealis sp. nov. and a sequence- based classification of related soil fungal species. Fungal Biol 118:943–955

    Article  CAS  Google Scholar 

  • Mikita-Barbato RA, Kelly JJ, Tate RL (2015) Wildfire effects on the properties and microbial community structure of organic horizon soils in the New Jersey Pinelands. Soil Biol Biochem 86:67–76

    Article  CAS  Google Scholar 

  • Mulvaney R (1996) Nitrogen - inorganic forms. In: Bartels J (ed) Methods of soil analysis part 3 chemical methods. Soil Sci Soc Am, Madison, WI, pp 1123–1184

    Google Scholar 

  • Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schoning I, Schrumpf M, Daniel R (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6:e17000

    Article  CAS  Google Scholar 

  • Nannipieri P, Trasar-Cepeda C, Dick RP (2018) Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol Fertil Soils 54:11–19

    Article  CAS  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Elliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71

    Article  Google Scholar 

  • Neff JC, Harden JW, Gleixner G (2005) Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can J For Res 35:2178–2187

    Article  CAS  Google Scholar 

  • Newell CL, Peet RK (1998) Vegetation of Linville Gorge Wilderness, North Carolina. Castanea 63:275–322

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: community ecology package version 2.4–4. https://cran.r-project.org/web/packages/vegan/index. html

  • Oliver AK, Callaham MA, Jr, Jumpponen A (2015) Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest system. For Ecol Manag 345:1–9

    Article  Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974

    Article  Google Scholar 

  • Osono T, Takeda H (2006) Fungal decomposition of Abies needle and Betula leaf litter. Mycologia 98:172–179

    Article  CAS  Google Scholar 

  • Pandey A, Chaudhry S, Sharma A, Choudhary VS, Malviya MK, Chamoli S, Rinu K, Trivedi P, Palni LMS (2011) Recovery of Bacillus and Pseudomonas spp. from the ‘Fired Plots’ under shifting cultivation in Northeast India. Curr Microbiol 62:273–280

    Article  CAS  Google Scholar 

  • Perrakis D, Zell D (2008).Remote assessment of burn severity: a pilot study in landscape monitoring. Parks Canada Agency: Western and Northern Service Centre and National Fire Centre

  • Pourreza M, Hosseini SM, Sinegani AAS, Matinizadeh M, Dick W (2014) Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year. Geoderma 213:95–102

    Article  CAS  Google Scholar 

  • Prieto-Fernandez A, Acea MJ, Carballas T (1998) Soil microbial and extractable C and N after wildfire. Biol Fertil Soils 27:132–142

    Article  CAS  Google Scholar 

  • Prosser JI (2012) Ecosystem processes and interactions in a morass of diversity. FEMS Microbiol Ecol 81:507–519

    Article  CAS  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    Article  CAS  Google Scholar 

  • Reilly MJ, Wimberly MC, Newell CL (2006) Wildfire effects on beta-diversity and species turnover in a forested landscape. J Veg Sci 17:447–454

    Google Scholar 

  • Restaino JC, Peterson DL (2013) Wildfire and fuel treatment effects on forest carbon dynamics in the western United States. For Ecol Manage 303:46–60

    Article  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  Google Scholar 

  • Rosling A, Cruz-Martinez K, Ihrmark K, Grelet GA, Lindahl B, Menkis A, James T (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 33:876–879

    Article  CAS  Google Scholar 

  • Saiya-Cork K, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B,Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537–7541.

    Article  CAS  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16S rRNA-Based Studies. PLoS ONE 6(12):e27310

    Article  CAS  Google Scholar 

  • Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762

    Article  CAS  Google Scholar 

  • Smith DP, Pea KG (2014) Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PloS One 9(2):e90234

    Article  CAS  Google Scholar 

  • Swanson ME, Franklin JF, Beschta RL, Crisafulli CM, DellaSala DA, Hutto RL, Lindenmayer DB, Swanson FJ (2011) The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front Ecol Environ 9:117–125

    Article  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • Vestergaard G, Schulze S, Scholer A, Schloter A (2017) Making big data smart – how to use metagenomics to understand soil quality. Biol Fertil Soils 53:479–484

    Article  Google Scholar 

  • Wang Q, Zhong M, Wang S (2012) A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For Ecol Manage 271:91–97

    Article  Google Scholar 

  • Weber CF, Lockhart J, Charaska E, Aho K, Lohse KA (2014) Bacterial composition of soils in ponderosa pine and mixed conifer forests exposed to different wildfire burn severity. Soil Biol Biochem 69:242–250

    Article  CAS  Google Scholar 

  • Williams RJ, Hallgren SW, Wilson GWT (2012) Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. For Ecol Manag 265:241-247

    Article  Google Scholar 

  • Wimberly MC, Reilly MJ (2007) Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETMþ imagery. Remote Sens Environ 108:189–197

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cratis D. Williams Graduate School, the Appalachian State University Biology Department, and the Grandfather Ranger district of the U.S.D.A Forest Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Madritch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huffman, M.S., Madritch, M.D. Soil microbial response following wildfires in thermic oak-pine forests. Biol Fertil Soils 54, 985–997 (2018). https://doi.org/10.1007/s00374-018-1322-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-018-1322-5

Keywords

Navigation