Biology and Fertility of Soils

, Volume 53, Issue 3, pp 287–301 | Cite as

Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds

  • Muhammad Shahbaz
  • Yakov Kuzyakov
  • Muhammad Sanaullah
  • Felix Heitkamp
  • Vladimir Zelenev
  • Amit Kumar
  • Evgenia Blagodatskaya
Original Paper


Crop residue quality and quantity have contrasting effects on soil organic matter (SOM) decomposition, but the mechanisms explaining such priming effect (PE) are still elusive. To reveal the role of residue quality and quantity in SOM priming, we applied two rates (5.4–10.8 g kg−1) of 13C-labeled wheat residues (separately: leaves, stems, roots) to soil and incubated for 120 days. To distinguish PE mechanisms, labeled C was traced in CO2 efflux and in microbial biomass and enzyme activities (involved in C, N, and P cycles) were measured during the incubation period. Regardless of residue type, PE intensity declined with increasing C additions. Roots were least mineralized but caused up to 60% higher PE compared to leaves or stems. During intensive residue mineralization (first 2–3 weeks), the low or negative PE resulted from pool substitution. Thereafter (15–60 days), a large decline in microbial biomass along with increased enzyme activity suggested that microbial necromass served as SOM primer. Finally, incorporation of SOM-derived C into remaining microbial biomass corresponded to increased enzyme activity, which is indicative of SOM cometabolism. Both PE and enzyme activities were primarily correlated with residue-metabolizing soil microorganisms. A unifying model demonstrated that PE was a function of residue mineralization, with thresholds for strong PE increase of up to 20% root, 44% stem, and 51% leaf mineralization. Thus, root mineralization has the lowest threshold for a strong PE increase. Our study emphasizes the role of residue-feeding microorganisms as active players in the PE, which are mediated by quality and quantity of crop residue additions.


13C-labeled crop residues Enzyme activities Litter quality Microbial necromass Priming effect Soil organic matter 



We acknowledge the financial support provided by the German Academic Exchange Service (DAAD) to MS and Alexander von Humboldt Foundation (AvH) to MSU. EB’s participation was supported by the Russian Science Foundation (project N 14-14-00625). We also acknowledge the technical support of Klaus Schützenmeister in isotope labeling of the plant material. We are thankful to Karin Schmidt and Anita Kriegel for laboratory assistance. The isotopic analyses were performed at the Kompetenzzentrum Stabile Isotope (KOSI), Goettingen. This study was funded by the Deutsche Forschungsgemeinschaft (DFG, projects HE 6726/6 and KU 1184/29).

Supplementary material

374_2016_1174_MOESM1_ESM.docx (44 kb)
Fig. S1 (DOCX 44.2 kb)
374_2016_1174_MOESM2_ESM.docx (50 kb)
Fig. S2 (DOCX 49.8 kb)
374_2016_1174_MOESM3_ESM.docx (14 kb)
Table S1 (DOCX 13.7 kb)


  1. Aber JD, Melillo JM (1982) Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can J Bot 60:2263–2269. doi: 10.1139/b82-277 CrossRefGoogle Scholar
  2. Adair EC, Parton WJ, Del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burke IC, Hart SC (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Chang Biol 14:2636–2660. doi: 10.1111/j.1365-2486.2008.01674.x Google Scholar
  3. Berg B, McClaugherty C (2014) Decomposition as a process: some main features. In: Berg B, McClaugherty C (eds) Plant litter — decomposition, humus formation, carbon sequestration, Third Edition Edn. Springer, Heidelberg, New York, Dordrecht, London, pp. 11–34. doi: 10.1007/978-3-642-38821-7_2
  4. Bertrand I, Chabbert B, Kurek B, Recous S (2006) Can the biochemical features and histology of wheat residues explain their decomposition in soil? Plant Soil 281:291–307. doi: 10.1007/s11104-005-4628-7 CrossRefGoogle Scholar
  5. Blagodatskaya Е, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131. doi: 10.1007/s00374-008-0334-y CrossRefGoogle Scholar
  6. Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211. doi: 10.1016/j.soilbio.2013.08.024 CrossRefGoogle Scholar
  7. Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011a) Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects. Soil Biol Biochem 43:778–786. doi: 10.1016/j.soilbio.2010.12.011 CrossRefGoogle Scholar
  8. Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011b) Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization. Soil Biol Biochem 43:159–166. doi: 10.1016/j.soilbio.2010.09.028 CrossRefGoogle Scholar
  9. Blagodatskaya E, Khomyakov N, Myachina O, Bogomolova I, Blagodatsky S, Kuzyakov Y (2014) Microbial interactions affect sources of priming induced by cellulose. Soil Biol Biochem 74:39–49. doi: 10.1016/j.soilbio.2014.02.017 CrossRefGoogle Scholar
  10. Blagodatsky S, Blagodatskaya E, Yuyukina T, Kuzyakov Y (2010) Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biol Biochem 42:1275–1283. doi: 10.1016/j.soilbio.2010.04.005 CrossRefGoogle Scholar
  11. Bromand S, Whalen J, Janzen H (2001) A pulse-labelling method to generate 13C-enriched plant materials. Plant Soil 235:253–257. doi: 10.1023/A:1011922103323 CrossRefGoogle Scholar
  12. Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. doi: 10.1016/j.soilbio.2012.11.009 CrossRefGoogle Scholar
  13. Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J (2015) Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Chang Biol 21:3200–3209. doi: 10.1111/gcb.12982 CrossRefPubMedGoogle Scholar
  14. Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Chang Biol 20:2356–2367. doi: 10.1111/gcb.12475 CrossRefPubMedGoogle Scholar
  15. Chen S, Wang Y, Hu Z, Gao H (2015) CO2 emissions from a forest soil as influenced by amendments of different crop straws: implications for priming effects. Catena 131:56–63. doi: 10.1016/j.catena.2015.03.016 CrossRefGoogle Scholar
  16. Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995. doi: 10.1111/gcb.12113 CrossRefPubMedGoogle Scholar
  17. Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779. doi: 10.1038/ngeo2520 CrossRefGoogle Scholar
  18. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–848. doi: 10.1016/S0038-0717(03)00123-8 CrossRefGoogle Scholar
  19. Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280. doi: 10.1038/nature06275 CrossRefPubMedGoogle Scholar
  20. Garcia-Pausas J, Paterson E (2011) Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biol Biochem 43:1705–1713. doi: 10.1016/j.soilbio.2011.04.016 CrossRefGoogle Scholar
  21. Guenet B, Neill C, Bardoux G, Abbadie L (2010) Is there a linear relationship between priming effect intensity and the amount of organic matter input? Appl Soil Ecol 46:436–442. doi: 10.1016/j.apsoil.2010.09.006 CrossRefGoogle Scholar
  22. Hayes JM (2004) An introduction to isotopic calculations. Woods Hole, MA 02543, USA:
  23. Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev 36:146–155PubMedPubMedCentralGoogle Scholar
  24. Hoyle FC, Murphy DV, Brookes PC (2008) Microbial response to the addition of glucose in low-fertility soils. Biol Fertil Soils 44:571–579. doi: 10.1007/s00374-007-0237-3 CrossRefGoogle Scholar
  25. Jenkinson DS, Fox RH, Rayner JH (1985) Interactions between fertilizer nitrogen and soil nitrogen—the so-called ‘priming’ effect. J Soil Sci 36:425–444. doi: 10.1111/j.1365-2389.1985.tb00348.x CrossRefGoogle Scholar
  26. Jiang-shan Z, Jian-fen G, Guang-shui C, Wei Q (2005) Soil microbial biomass and its controls. J Forest Res 16:327–330. doi: 10.1007/BF02858201 CrossRefGoogle Scholar
  27. Johnson JMF, Novak JM, Varvel GE, Stott DE, Osborne SL, Karlen DL, Lamb JA, Baker J, Adler PR (2014) Crop residue mass needed to maintain soil organic carbon levels: can it be determined? BioEnergy Res 7:481–490. doi: 10.1007/s12155-013-9402-8 CrossRefGoogle Scholar
  28. Kramer S, Marhan S, Ruess L, Armbruster W, Butenschoen O, Haslwimmer H, Kuzyakov Y, Pausch J, Scheunemann N, Schoene J, Schmalwasser A (2012) Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems. Pedobiologia 55:111–119. doi: 10.1016/j.pedobi.2011.12.001 CrossRefGoogle Scholar
  29. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371. doi: 10.1016/j.soilbio.2010.04.003 CrossRefGoogle Scholar
  30. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498. doi: 10.1016/S0038-0717(00)00084-5 CrossRefGoogle Scholar
  31. Ladd JN, Foster R, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Stotzky G, Bollag J-M (eds) Soil biochemistry 9. Marcel Dekker, New York, pp 23–78Google Scholar
  32. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. doi: 10.1038/nature16069 CrossRefPubMedGoogle Scholar
  33. Leifeld J, von Lützow M (2014) Chemical and microbial activation energies of soil organic matter decomposition. Biol Fertil Soils 50:147–153. doi: 10.1007/s00374-013-0822-6 CrossRefGoogle Scholar
  34. Lian T, Wang G, Yu Z, Li Y, Liu X, Jin J (2016) Carbon input from 13C-labelled soybean residues in particulate organic carbon fractions in a Mollisol. Biol Fertil Soils 52:331–339. doi: 10.1007/s00374-015-1080-6 CrossRefGoogle Scholar
  35. Makarov MI, Malysheva TI, Menyailo OV, Soudzilovskaia NA, Van Logtestijn RSP, Cornelissen JHC (2015) Effect of K2SO4 concentration on extractability and isotope signature (δ13C and δ15N) of soil C and N fractions. Eur J Soil Sci 66:417–426. doi: 10.1111/ejss.12243 CrossRefGoogle Scholar
  36. Meyer SL (1975) Data analysis for scientists and engineers. Wiley, New YorkGoogle Scholar
  37. Miltner A, Kindler R, Knicker H, Richnow HH, Kästner M (2009) Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter. Org Geochem 40:978–985. doi: 10.1016/j.orggeochem.2009.06.008 CrossRefGoogle Scholar
  38. Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55. doi: 10.1007/s10533-011-9658-z CrossRefGoogle Scholar
  39. Nannipieri P, Johnson RL, Paul EA (1978) Criteria for measurement of microbial growth and activity in soil. Soil Biol Biochem 10:223–229. doi: 10.1016/0038-0717(78)90100-1 CrossRefGoogle Scholar
  40. Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Activity, ecology and applications. Marcel Dekker, New York, pp 1–33Google Scholar
  41. Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann EK, Obreson A, Frossard E (eds) Phosphorus in action, Soil Biology, vol 26. Springer Verlag, Berlin Heidelberg, pp 215–243 Google Scholar
  42. Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762. doi: 10.1007/s00374-012-0723-0 CrossRefGoogle Scholar
  43. Nguyen TT, Marschner P (2016) Soil respiration, microbial biomass and nutrient availability in soil after repeated addition of low and high C/N plant residues. Biol Fertil Soils 52:165–176. doi: 10.1007/s00374-015-1063-7 CrossRefGoogle Scholar
  44. Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ (2009) Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Appl Soil Ecol 42:183–190. doi: 10.1016/j.apsoil.2009.03.003 CrossRefGoogle Scholar
  45. Paterson E, Sim A (2013) Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Glob Chang Biol 19:1562–1571. doi: 10.1111/gcb.12140 CrossRefPubMedGoogle Scholar
  46. Poirier V, Angers D, Rochette P, Whalen J (2013) Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil. Biol Fertil Soils 49:527–535. doi: 10.1007/s00374-013-0794-6 CrossRefGoogle Scholar
  47. Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J Microbiol Meth 58:233–241. doi: 10.1016/j.mimet.2004.04.001 CrossRefGoogle Scholar
  48. Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi: 10.1007/s11104-004-0907-y CrossRefGoogle Scholar
  49. Sanaullah M, Razavi BS, Blagodatskaya E, Kuzyakov Y (2016) Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol Fertil Soils 52:505–514. doi: 10.1007/s00374-016-1094-8 CrossRefGoogle Scholar
  50. Schnecker J, Wild B, Hofhansl F, Alves RJ, Bárta J, Čapek P, Fuchslueger L, Gentsch N, Gittel A, Guggenberger G, Hofer A (2014) Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils. PLoS One 9:e94076. doi: 10.1371/journal.pone.0094076 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shahbaz M, Kuzyakov Y, Heitkamp F (2016a) Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls. Geoderma. doi: 10.1016/j.geoderma.2016.05.019 Google Scholar
  52. Shahbaz M, Kuzyakov Y, Maqsood S, Wendland M, Heitkamp F (2016b) Decadal nitrogen fertilization decreases mineral-associated and subsoil carbon: a 32 year study. Land Degrad Develop. doi: 10.1002/ldr.2667 Google Scholar
  53. Stewart CE, Moturi P, Follett RF, Halvorson AD (2015) Lignin biochemistry and soil N determine crop residue decomposition and soil priming. Biogeochemistry 124:335–351. doi: 10.1007/s10533-015-0101-8 CrossRefGoogle Scholar
  54. Tian J, Pausch J, Yu G, Blagodatskaya E, Gao Y, Kuzyakov Y (2015) Aggregate size and their disruption affect 14C-labeled glucose mineralization and priming effect. Appl Soil Ecol 90:1–10. doi: 10.1016/j.apsoil.2015.01.014 CrossRefGoogle Scholar
  55. Vance E, Brookes P, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi: 10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  56. Wagner GH (1968) Significance of microbial tissue to soil organic matter. In: Isotopes and radiation in soil organic matter studies. FAO/IAEA, Technical meeting, Vienna, pp 197–205Google Scholar
  57. Wang H, Boutton T, Xu W, Hu G, Jiang P, Bai E (2015) Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Sci Rep 5:10102. doi: 10.1038/srep10102 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wang J, Dokohely ME, Xiong Z, Kuzyakov Y (2016) Contrasting effects of aged and fresh biochars on glucose-induced priming and microbial activities in paddy soil. J Soils Sediments 16:191–203. doi: 10.1007/s11368-015-1189-0 CrossRefGoogle Scholar
  59. Webster R (2007) Analysis of variance, inference, multiple comparisons and sampling effects in soil research. Eur J Soil Sci 58:74–82. doi: 10.1111/j.1365-2389.2006.00801.x CrossRefGoogle Scholar
  60. Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169. doi: 10.1016/0038-0717(90)90046-3 CrossRefGoogle Scholar
  61. Xiao C, Guenet B, Zhou Y, Su J, Janssens IA (2015) Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation. Oikos 124:649–657. doi: 10.1111/oik.01728 CrossRefGoogle Scholar
  62. Xu X, Ouyang H, Richter A, Wanek W, Cao G, Kuzyakov Y (2011) Spatio-temporal variations determine plant-microbe competition for inorganic nitrogen in an alpine meadow. J Ecol 99:563–571. doi: 10.1111/j.1365-2745.2010.01789.x Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Agricultural Soil SciencesGeorg August University GöttingenGöttingenGermany
  2. 2.Section of Physical Geography, Faculty of Geoscience and GeographyGeorg August University GöttingenGöttingenGermany
  3. 3.Department of Soil Science of Temperate EcosystemsGeorg August University GöttingenGöttingenGermany
  4. 4.Institute of Soil and Environmental SciencesUniversity of AgricultureFaisalabadPakistan
  5. 5.Department of Microbiology, Biological FacultyMoscow State UniversityMoscowRussia
  6. 6.Institute of Physicochemical and Biological Problems in Soil ScienceRussian Academy of SciencesPushchinoRussian Federation

Personalised recommendations