Advertisement

Biology and Fertility of Soils

, Volume 50, Issue 3, pp 555–559 | Cite as

Bacterial community structure in soils of the Tibetan Plateau affected by discontinuous permafrost or seasonal freezing

  • Julien OllivierEmail author
  • Sizhong Yang
  • Corina Dörfer
  • Gerhard Welzl
  • Peter Kühn
  • Thomas Scholten
  • Dirk Wagner
  • Michael Schloter
Short Communication

Abstract

In this study, we assessed the abundance and diversity of bacterial communities by 16S rRNA gene-based qPCR and T-RFLP across different soil depths of three sites located on the Tibetan Plateau which are affected by discontinuous permafrost or characterized as seasonally frozen ground. Our data indicates that bacterial community structure was significantly influenced by soil depth mainly at the site affected by seasonal freezing and thawing. In contrast at sites affected by permafrost, diversity pattern of bacterial communities in the top soil and deeper soil layers changed to a far lower extend. This might be related to the fact that the investigated sites were not waterlogged at the permafrost layer, thus no processes that shifts towards bacterial communities, which require anoxic environments, could be expected. Overall, at all sites, labile and stable C as well as N pools act as main drivers for bacterial communities.

Keywords

Tibetan Plateau Permafrost Bacterial diversity 16S rRNA gene fingerprinting 

Notes

Acknowledgment

We are grateful for the funding provided by the German Federal Ministry of Education and Research (grant 03G0810A-C). We would like to thank further Jin-Sheng He from Peking University and all members of the Peking University and the North West Institute of Plateau Biology, Chinese Academy of Sciences, expedition team for their support.

Supplementary material

374_2013_869_MOESM1_ESM.doc (251 kb)
ESM 1 (DOC 251 kb)

References

  1. Agnelli A, Ascher J, Corti G, Ceccherini MT, Nannipieri P, Pietramellara G (2004) Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration, and DGGE of total and extracellular DNA. Soil Biol Biochem 36:859–868. doi: 10.1016/j.soilbio.2004.02.004 CrossRefGoogle Scholar
  2. Anderson MJ (2001) A new method for nonparametric multivariate analysis of variance. Austral Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  3. Bach H-J, Tomanova J, Schloter M, Munch JC (2002) Enumeration of total bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR-mediated amplification. J Microbiol Meth 49:235–245CrossRefGoogle Scholar
  4. Barbier BA, Dziduch I, Liebner S, Ganzert L, Lantuit H, Pollard W, Wagner D (2012) Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiol Ecol 82:287–302. doi: 10.1111/j.1574-6941.2012.01332.x PubMedCrossRefGoogle Scholar
  5. Baumann F, He J-S, Schmidt K, Kühn P, Scholten T (2009) Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Glob Chang Biol 15:3001–3017. doi: 10.1111/j.1365-2486.2009.01953.x CrossRefGoogle Scholar
  6. Blackwood CB, Marsh T, Kim S-H, Paul EA (2003) Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl Environ Microbiol 69:926–932. doi: 10.1128/aem.69.2.926-932.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chaparro J, Sheflin A, Manter D, Vivanco J (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499. doi: 10.1007/s00374-012-0691-4 CrossRefGoogle Scholar
  8. Collins RE, Rocap G (2007) REPK: an analytical web server to select restriction endonucleases for terminal restriction fragment length polymorphism analysis. Nucleic Acids Res 35:W58–W62. doi: 10.1093/nar/gkm384 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Culman S, Gauch H, Blackwood C, Thies J (2008) Analysis of T-RFLP data using analysis of variance and ordination methods: a comparative study. J Microbiol Meth 75:55–63CrossRefGoogle Scholar
  10. Doerfer C, Kuehhn P, Baumann F, He J-S, Scholten T (2013) Soil organic carbon pools and stocks in permafrost-affected soils on the Tibetan Plateau. PLoS One 8:e57024CrossRefGoogle Scholar
  11. Eilers KG, Debenport S, Anderson S, Fierer N (2012) Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem 50:58–65. doi: 10.1016/j.soilbio.2012.03.011 CrossRefGoogle Scholar
  12. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176. doi: 10.1016/S0038-0717(02)00251-1 CrossRefGoogle Scholar
  13. Graham DE, Wallenstein MD, Vishnivetskaya TA, Waldrop MP, Phelps TJ, Pfiffner SM, Onstott TC, Whyte LG, Rivkina EM, Gilichinsky DA, Elias DA, Mackelprang R, VerBerkmoes NC, Hettich RL, Wagner D, Wullschleger SD, Jansson JK (2012) Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J 6:709–712PubMedCentralPubMedCrossRefGoogle Scholar
  14. Lueders T, Kindler R, Miltner A, Friedrich MW, Kaestner M (2006) Identification of bacterial micropredators distinctively active in a soil microbial food web. Appl Environ Microbiol 72:5342–5348. doi: 10.1128/aem.00400-06 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559PubMedCrossRefGoogle Scholar
  16. Steven B, Léveillé R, Pollard W, Whyte L (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267. doi: 10.1007/s00792-006-0506-3 PubMedCrossRefGoogle Scholar
  17. Thioulouse J, Chessel D, Doledec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83. doi: 10.1023/a:1018513530268 CrossRefGoogle Scholar
  18. Wagner D, Lipski A, Embacher A, Gattinger A (2005) Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ Microbiol 7:1582–1592. doi: 10.1111/j.1462-2920.2005.00849.x PubMedCrossRefGoogle Scholar
  19. Wagner D, Gattinger A, Embacher A, Pfeiffer E-M, Schloter M, Lipski A (2007) Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic, and its implication for the global methane budget. Glob Chang Biol 13:1089–1099. doi: 10.1111/j.1365-2486.2007.01331.x CrossRefGoogle Scholar
  20. Wagner D, Kobabe S, Liebner S (2009) Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia. This article is one of a selection of papers in the special issue on polar and alpine microbiology. Can J Microbiol 55:73–83. doi: 10.1139/w08-121 PubMedCrossRefGoogle Scholar
  21. Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR, and microarray analyses. ISME J 4:1206–1214. doi: 10.1038/ismej.2010.41 PubMedCrossRefGoogle Scholar
  22. Zhang T (2005) Historical overview of permafrost studies in China. Phys Geogr 26:279–298. doi: 10.2747/0272-3646.26.4.279 CrossRefGoogle Scholar
  23. Ziegler M, Engel M, Welzl G, Schloter M (2013) Development of a simple root model to study the effects of single exudates on the development of bacterial community structure. J Microbiol Methods 94:30–36. doi: 10.1016/j.mimet.2013.04.003 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julien Ollivier
    • 1
    Email author
  • Sizhong Yang
    • 2
  • Corina Dörfer
    • 3
  • Gerhard Welzl
    • 1
  • Peter Kühn
    • 3
  • Thomas Scholten
    • 3
  • Dirk Wagner
    • 2
  • Michael Schloter
    • 1
  1. 1.Research Unit Environmental GenomicsHelmholtz Zentrum MünchenNeuherbergGermany
  2. 2.German Research Centre for Geosciences (GFZ)Helmholtz Zentrum PotsdamPotsdamGermany
  3. 3.Physical Geography and Soil ScienceUniversity of TübingenTübingenGermany

Personalised recommendations