Skip to main content
Log in

Kidney stones and imaging: What can your radiologist do for you?

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Objectives

We discuss in this review, urologists’ expectations of imaging in terms of detection, characterization, pre-planning treatment and follow-up of urinary stones.

Materials and methods

Data acquisition regarding kidney stones and imaging was performed using MEDLINE searches with combinations of the following keywords: urinary stones, CT Urography, low dose CT, MRI urography, renal stones ultrasound, conventional radiography, surgery.

Results

CT has become the gold standard for the evaluation of urinary stones. Scanning provides information regarding stone (composition, size, burden, location), collecting system and renal parenchyma. Those findings are crucial in determining appropriate treatment strategies. Because CT exposes the patient to substantial ionizing radiation, efforts have already been made to decrease the CT radiation dose for CT examination (low dose CT) and optimize image quality. Efforts also are being made to use non ionizing modalities such as ultrasound in combination with radiography particularly for the follow up of renal stones.

Conclusion

CT is the preferred method for the evaluation and treatment planning of urolithiasis. CT radiation dose reduction can be achieved with low dose CT. However, conventional radiography and ultrasound are still recommended in the follow up of renal stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Levine JA, Neitlich J, Verga M, Dalrymple N, Smith RC (1997) Ureteral calculi in patients with flank pain: correlation of plain radiography with unenhanced helical CT. Radiology 204:27–31

    Article  CAS  PubMed  Google Scholar 

  2. Yap WW, Belfield JC, Bhatnagar P, Kennish S, Wah TM (2012) Evaluation of the sensitivity of scout radiographs on unenhanced helical CT in identifying ureteric calculi: a large UK tertiary referral centre experience. Br J Radiol 85:800–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mutgi A, Williams JW, Nettleman M (1991) Renal colic. Utility of the plain abdominal roentgenogram. Arch Intern Med 151:1589–1592

    Article  CAS  PubMed  Google Scholar 

  4. Tublin ME, Bude RO, Platt JF (2003) Review. The resistive index in renal Doppler sonography: where do we stand? AJR 180:885–892

    Article  PubMed  Google Scholar 

  5. Dillman JR, Kappil M, Weadock WJ et al (2011) Sonographic twinkling artifact for renal calculus detection: correlation with CT. Radiology 259:911–916

    Article  PubMed  Google Scholar 

  6. Ulusan S, Koc Z, Tokmak N (2007) Accuracy of sonography for detecting renal stone: comparison with CT. J Clin Ultrasound 35:256–261

    Article  PubMed  Google Scholar 

  7. Viprakasit DP, Sawyer MD, Herrell SD, Miller NL (2012) Limitations of ultrasonography in the evaluation of urolithiasis: a correlation with computed tomography. J Endourol 26:209–213

    Article  PubMed  Google Scholar 

  8. Fowler KA, Locken JA, Duchesne JH, Williamson MR (2002) US for detecting renal calculi with nonenhanced CT as a reference standard. Radiology 222:109–113

    Article  PubMed  Google Scholar 

  9. Ray AA, Ghiculete D, Pace KT, Honey RJ (2012) Limitations to ultrasound in the detection and measurement of urinary tract calculi. Urology 76:295–300

    Article  Google Scholar 

  10. Kanno T, Kubota M, Sakamoto H et al (2014) The efficacy of ultrasonography for the detection of renal stone. Urology 84:285–288

    Article  PubMed  Google Scholar 

  11. Moesbergen TC, de Ryke RJ, Dunbar S, Wells JE, Anderson NG (2011) Distal ureteral calculi: US follow-up. Radiology 260:575–580

    Article  PubMed  Google Scholar 

  12. Karabacakoglu A, Karakose S, Ince O, Cobankara OE, Karalezli G (2004) Diagnostic value of diuretic-enhanced excretory MR urography in patients with obstructive uropathy. Eur J Radiol 52:320–327

    Article  PubMed  Google Scholar 

  13. Nolte-Ernsting CC, Bucker A, Adam GB et al (1998) Gadolinium-enhanced excretory MR urography after low-dose diuretic injection: comparison with conventional excretory urography. Radiology 209:147–157

    Article  CAS  PubMed  Google Scholar 

  14. White WM, Johnson EB, Zite NB et al (2013) Predictive value of current imaging modalities for the detection of urolithiasis during pregnancy: a multicenter, longitudinal study. J Urol 189:931–934

    Article  PubMed  Google Scholar 

  15. Fahmy NM, Elkoushy MA, Andonian S (2012) Effective radiation exposure in evaluation and follow-up of patients with urolithiasis. Urology 79:43–47

    Article  PubMed  Google Scholar 

  16. Katz DS, Venkataramanan N, Napel S, Sommer FG (2003) Can low-dose unenhanced multidetector CT be used for routine evaluation of suspected renal colic? AJR 180:313–315

    Article  PubMed  Google Scholar 

  17. Mulkens TH, Daineffe S, De Wijngaert R et al (2007) Urinary stone disease: comparison of standard-dose and low-dose with 4D MDCT tube current modulation. AJR 188:553–562

    Article  PubMed  Google Scholar 

  18. Tack D, Sourtzis S, Delpierre I, de Maertelaer V, Gevenois PA (2003) Low-dose unenhanced multidetector CT of patients with suspected renal colic. AJR 180:305–311

    Article  PubMed  Google Scholar 

  19. Heneghan JP, McGuire KA, Leder RA, DeLong DM, Yoshizumi T, Nelson RC (2003) Helical CT for nephrolithiasis and ureterolithiasis: comparison of conventional and reduced radiation-dose techniques. Radiology 229:575–580

    Article  PubMed  Google Scholar 

  20. Liu W, Esler SJ, Kenny BJ, Goh RH, Rainbow AJ, Stevenson GW (2000) Low-dose nonenhanced helical CT of renal colic: assessment of ureteric stone detection and measurement of effective dose equivalent. Radiology 215:51–54

    Article  CAS  PubMed  Google Scholar 

  21. Sohn W, Clayman RV, Lee JY, Cohen A, Mucksavage P (2013) Low-dose and standard computed tomography scans yield equivalent stone measurements. Urology 81:231–234

    Article  PubMed  Google Scholar 

  22. Poletti PA, Platon A, Rutschmann OT, Schmidlin FR, Iselin CE, Becker CD (2007) Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR 188:927–933

    Article  PubMed  Google Scholar 

  23. Tartari S, Rizzati R, Righi R, Deledda A, Terrani S, Benea G (2010) Low-dose unenhanced CT protocols according to individual body size for evaluating suspected renal colic: cumulative radiation exposures. Radiol Med 115:105–114

    Article  CAS  PubMed  Google Scholar 

  24. Jin DH, Lamberton GR, Broome DR et al (2010) Effect of reduced radiation CT protocols on the detection of renal calculi. Radiology 255:100–107

    Article  PubMed  Google Scholar 

  25. Kalra MK, Maher MM, Toth TL, Kamath RS, Halpern EF, Saini S (2004) Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis. Radiology 232:347–353

    Article  PubMed  Google Scholar 

  26. Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR 194:191–199

    Article  PubMed  Google Scholar 

  27. Kulkarni NM, Eisner BH, Pinho DF, Joshi MC, Kambadakone AR, Sahani DV (2013) Determination of renal stone composition in phantom and patients using single-source dual-energy computed tomography. J Comput Assist Tomogr 37:37–45

    Article  PubMed  Google Scholar 

  28. Assi Z, Platt JF, Francis IR, Cohan RH, Korobkin M (2000) Sensitivity of CT scout radiography and abdominal radiography for revealing ureteral calculi on helical CT: implications for radiologic follow-up. AJR 175:333–337

    Article  CAS  PubMed  Google Scholar 

  29. Chu G, Rosenfield AT, Anderson K, Scout L, Smith RC (1999) Sensitivity and value of digital CT scout radiography for detecting ureteral stones in patients with ureterolithiasis diagnosed on unenhanced CT. AJR 173:417–423

    Article  CAS  PubMed  Google Scholar 

  30. Furlan A, Federle MP, Yealy DM, Averch TD, Pealer K (2008) Nonobstructing renal stones on unenhanced CT: a real cause for renal colic? AJR 190:W125–W127

    Article  PubMed  Google Scholar 

  31. Eisner BH, Kambadakone A, Monga M et al (2009) Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study. J Urol 181:1710–1715

    Article  PubMed  Google Scholar 

  32. Bandi G, Meiners RJ, Pickhardt PJ, Nakada SY (2009) Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. BJU Int 103:524–528

    Article  PubMed  Google Scholar 

  33. Demehri S, Kalra MK, Rybicki FJ et al (2011) Quantification of urinary stone volume: attenuation threshold-based CT method—a technical note. Radiology 258:915–922

    Article  PubMed  Google Scholar 

  34. Preminger GM, Tiselius HG, Assimos DG et al (2007) 2007 guideline for the management of ureteral calculi. Eur Urol 52:1610–1631

    Article  PubMed  Google Scholar 

  35. Finch W, Johnston R, Shaida N, Winterbottom A, Wiseman O (2014) Measuring stone volume—three-dimensional software reconstruction or an ellipsoid algebra formula? BJU Int 113:610–614

    Article  PubMed  Google Scholar 

  36. Yoshida S, Hayashi T, Morozumi M, Osada H, Honda N, Yamada T (2007) Three-dimensional assessment of urinary stone on non-contrast helical computed tomography as the predictor of stonestreet formation after extracorporeal shock wave lithotripsy for stones smaller than 20 mm. Int J Urol 14:665–667

    Article  PubMed  Google Scholar 

  37. Koraishy FM, Ngo TT, Israel GM, Dahl NK (2014) CT urography for the diagnosis of medullary sponge kidney. Am J Nephrol 39:165–170

    Article  PubMed  Google Scholar 

  38. Ciudin A, Luque Galvez MP, Salvador Izquierdo R et al (2013) Validation of Randall’s plaque theory using unenhanced abdominal computed tomography. Urology 81:246–249

    Article  PubMed  Google Scholar 

  39. Miller NL, Humphreys MR, Coe FL et al (2010) Nephrocalcinosis: re-defined in the era of endourology. Urol Res 38:421–427

    Article  PubMed Central  PubMed  Google Scholar 

  40. Williams JC Jr, Kim SC, Zarse CA, McAteer JA, Lingeman JE (2004) Progress in the use of helical CT for imaging urinary calculi. J Endourol 18:937–941

    Article  PubMed  Google Scholar 

  41. Bellin MF, Renard-Penna R, Conort P et al (2004) Helical CT evaluation of the chemical composition of urinary tract calculi with a discriminant analysis of CT-attenuation values and density. Eur Radiol 14:2134–2140

    Article  PubMed  Google Scholar 

  42. Weld KJ, Montiglio C, Morris MS, Bush AC, Cespedes RD (2007) Shock wave lithotripsy success for renal stones based on patient and stone computed tomography characteristics. Urology 70:1043–1046 (discussion 1046–1047)

    Article  PubMed  Google Scholar 

  43. Primak AN, Fletcher JG, Vrtiska TJ et al (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14:1441–1447

    Article  PubMed Central  PubMed  Google Scholar 

  44. Boll DT, Patil NA, Paulson EK et al (2009) Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition—pilot study. Radiology 250:813–820

    Article  PubMed  Google Scholar 

  45. Manglaviti G, Tresoldi S, Guerrer CS et al (2011) In vivo evaluation of the chemical composition of urinary stones using dual-energy CT. AJR 197:W76–W83

    Article  PubMed  Google Scholar 

  46. Qu M, Ramirez-Giraldo JC, Leng S et al (2011) Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. AJR 196:1279–1287

    Article  PubMed Central  PubMed  Google Scholar 

  47. Graser A, Johnson TR, Bader M et al (2008) Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol 43:112–119

    Article  PubMed  Google Scholar 

  48. Patel U, Walkden RM, Ghani KR, Anson K (2009) Three-dimensional CT pyelography for planning of percutaneous nephrostolithotomy: accuracy of stone measurement, stone depiction and pelvicalyceal reconstruction. Eur Radiol 19:1280–1288

    Article  PubMed  Google Scholar 

  49. Smith RC, Coll DM (2000) Helical computed tomography in the diagnosis of ureteric colic. BJU Int 86(Suppl 1):33–41

    PubMed  Google Scholar 

  50. Fulgham PF, Assimos DG, Pearle MS, Preminger GM (2013) Clinical effectiveness protocols for imaging in the management of ureteral calculous disease: AUA technology assessment. J Urol 189:1203–1213

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaële Renard-Penna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renard-Penna, R., Martin, A., Conort, P. et al. Kidney stones and imaging: What can your radiologist do for you?. World J Urol 33, 193–202 (2015). https://doi.org/10.1007/s00345-014-1416-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-014-1416-0

Keywords

Navigation