Skip to main content
Log in

A trapped-ion local field probe

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We introduce a measurement scheme that utilizes a single ion as a local field probe. The ion is confined in a segmented Paul trap and shuttled around to reach different probing sites. By the use of a single atom probe, it becomes possible characterizing fields with spatial resolution of a few nm within an extensive region of millimeters. We demonstrate the scheme by accurately investigating the electric fields providing the confinement for the ion. For this we present all theoretical and practical methods necessary to generate these potentials. We find sub-percent agreement between measured and calculated electric field values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Benhelm, G. Kirchmair, C.F. Roos, R. Blatt, Nat. Phys. 4, 463 (2008)

    Article  Google Scholar 

  2. H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643 (2005)

    Article  ADS  Google Scholar 

  3. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, R. Reichle, D.J. Wineland, Nature 438, 639 (2005)

    Article  ADS  Google Scholar 

  4. J. Chiaverini, D. Leibfried, T. Schaetz, M.D. Barrett, R.B. Blakestad, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, D.J. Wineland, Nature 432, 602 (2004)

    Article  ADS  Google Scholar 

  5. D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002)

    Article  ADS  Google Scholar 

  6. D. Leibfried, E. Knill, C. Ospelkaus, D.J. Wineland, Phys. Rev. A 76, 032324 (2007)

    Article  ADS  Google Scholar 

  7. H. Wunderlich, C. Wunderlich, K. Singer, F. Schmidt-Kaler, Phys. Rev. A 79, 052324 (2009)

    Article  ADS  Google Scholar 

  8. S. Schulz, U. Poschinger, F. Ziesel, F. Schmidt-Kaler, New J. Phys. 10, 045007 (2008)

    Article  ADS  Google Scholar 

  9. G. Huber, T. Deuschle, W. Schnitzler, R. Reichle, K. Singer, F. Schmidt-Kaler, New J. Phys. 10, 013004 (2008)

    Article  Google Scholar 

  10. M. Drewsen, A. Mortensen, R. Martinussen, P. Staanum, J.L. Sørensen, Phys. Rev. Lett. 93, 243201 (2004)

    Article  ADS  Google Scholar 

  11. M. Murphy, L. Jiang, N. Khaneja, T. Calarco, Phys. Rev. A 79, 020301(R) (2009)

    Article  ADS  Google Scholar 

  12. J. Eble, S. Ulm, P. Zahariev, F. Schmidt-Kaler, K. Singer, J. Opt. Soc. Am. 27(6), A99 (2010)

    Article  Google Scholar 

  13. G. Huber, F. Schmidt-Kaler, S. Deffner, E. Lutz, Phys. Rev. Lett. 101, 070403 (2008)

    Article  ADS  Google Scholar 

  14. R. Schützhold, M. Uhlmann, L. Petersen, H. Schmitz, A. Friedenauer, T. Schätz, Phys. Rev. Lett. 99, 201301 (2007)

    Article  ADS  Google Scholar 

  15. M. Johanning, A. F Varón, C. Wunderlich, J. Phys. B, At. Mol. Opt. Phys. 42, 154009 (2009)

    Article  ADS  Google Scholar 

  16. S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Mauritz Andersson, S. Groth, I. Bar-Joseph, P. Krüger, J. Schmiedmayer, Nature 435, 440 (2005)

    Article  ADS  Google Scholar 

  17. S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, J. Schmiedmayer, Science 319, 1226 (2008)

    Article  ADS  Google Scholar 

  18. J.M. Obrecht, R.J. Wild, E.A. Cornell, Phys. Rev. A 75, 062903 (2007)

    Article  ADS  Google Scholar 

  19. M.J. Biercuk, H. Uys, J.W. Britton, A.P. VanDevender, J.J. Bollinger, arXiv:1004.0780

  20. D.M. Harber, J.M. Obrecht, J.M. McGuirk, E.A. Cornell, Phys. Rev. A 72, 033610 (2005)

    Article  ADS  Google Scholar 

  21. L. Greengard, V. Rokhlin, in Vortex Methods, vol. 121 (Springer, Berlin, 1988)

    Google Scholar 

  22. K. Nabors, F.T. Korsmeyer, F.T. Leighton, J. White, SIAM J. Sci. Comput. 15, 713 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler, arXiv:0912.0196

  24. C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (Chapman and Hall/CRC, Boca Raton, 2002)

    Book  MATH  Google Scholar 

  25. A.N. Tikhonov, V.A. Arsenin, Solution of Ill-posed Problems (Winston, Washington, 1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, G., Ziesel, F., Poschinger, U. et al. A trapped-ion local field probe. Appl. Phys. B 100, 725–730 (2010). https://doi.org/10.1007/s00340-010-4148-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4148-x

Keywords

Navigation