Advertisement

Applied Physics B

, Volume 100, Issue 4, pp 725–730 | Cite as

A trapped-ion local field probe

  • G. Huber
  • F. Ziesel
  • U. Poschinger
  • K. Singer
  • F. Schmidt-Kaler
Article

Abstract

We introduce a measurement scheme that utilizes a single ion as a local field probe. The ion is confined in a segmented Paul trap and shuttled around to reach different probing sites. By the use of a single atom probe, it becomes possible characterizing fields with spatial resolution of a few nm within an extensive region of millimeters. We demonstrate the scheme by accurately investigating the electric fields providing the confinement for the ion. For this we present all theoretical and practical methods necessary to generate these potentials. We find sub-percent agreement between measured and calculated electric field values.

Keywords

Paul Trap Trap Frequency Trap Electrode Trap Axis Linear Paul Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Benhelm, G. Kirchmair, C.F. Roos, R. Blatt, Nat. Phys. 4, 463 (2008) CrossRefGoogle Scholar
  2. 2.
    H. Häffner, W. Hänsel, C.F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U.D. Rapol, M. Riebe, P.O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt, Nature 438, 643 (2005) CrossRefADSGoogle Scholar
  3. 3.
    D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, R. Reichle, D.J. Wineland, Nature 438, 639 (2005) CrossRefADSGoogle Scholar
  4. 4.
    J. Chiaverini, D. Leibfried, T. Schaetz, M.D. Barrett, R.B. Blakestad, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, D.J. Wineland, Nature 432, 602 (2004) CrossRefADSGoogle Scholar
  5. 5.
    D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002) CrossRefADSGoogle Scholar
  6. 6.
    D. Leibfried, E. Knill, C. Ospelkaus, D.J. Wineland, Phys. Rev. A 76, 032324 (2007) CrossRefADSGoogle Scholar
  7. 7.
    H. Wunderlich, C. Wunderlich, K. Singer, F. Schmidt-Kaler, Phys. Rev. A 79, 052324 (2009) CrossRefADSGoogle Scholar
  8. 8.
    S. Schulz, U. Poschinger, F. Ziesel, F. Schmidt-Kaler, New J. Phys. 10, 045007 (2008) CrossRefADSGoogle Scholar
  9. 9.
    G. Huber, T. Deuschle, W. Schnitzler, R. Reichle, K. Singer, F. Schmidt-Kaler, New J. Phys. 10, 013004 (2008) CrossRefGoogle Scholar
  10. 10.
    M. Drewsen, A. Mortensen, R. Martinussen, P. Staanum, J.L. Sørensen, Phys. Rev. Lett. 93, 243201 (2004) CrossRefADSGoogle Scholar
  11. 11.
    M. Murphy, L. Jiang, N. Khaneja, T. Calarco, Phys. Rev. A 79, 020301(R) (2009) CrossRefADSGoogle Scholar
  12. 12.
    J. Eble, S. Ulm, P. Zahariev, F. Schmidt-Kaler, K. Singer, J. Opt. Soc. Am. 27(6), A99 (2010) CrossRefGoogle Scholar
  13. 13.
    G. Huber, F. Schmidt-Kaler, S. Deffner, E. Lutz, Phys. Rev. Lett. 101, 070403 (2008) CrossRefADSGoogle Scholar
  14. 14.
    R. Schützhold, M. Uhlmann, L. Petersen, H. Schmitz, A. Friedenauer, T. Schätz, Phys. Rev. Lett. 99, 201301 (2007) CrossRefADSGoogle Scholar
  15. 15.
    M. Johanning, A. F Varón, C. Wunderlich, J. Phys. B, At. Mol. Opt. Phys. 42, 154009 (2009) CrossRefADSGoogle Scholar
  16. 16.
    S. Wildermuth, S. Hofferberth, I. Lesanovsky, E. Haller, L. Mauritz Andersson, S. Groth, I. Bar-Joseph, P. Krüger, J. Schmiedmayer, Nature 435, 440 (2005) CrossRefADSGoogle Scholar
  17. 17.
    S. Aigner, L. Della Pietra, Y. Japha, O. Entin-Wohlman, T. David, R. Salem, R. Folman, J. Schmiedmayer, Science 319, 1226 (2008) CrossRefADSGoogle Scholar
  18. 18.
    J.M. Obrecht, R.J. Wild, E.A. Cornell, Phys. Rev. A 75, 062903 (2007) CrossRefADSGoogle Scholar
  19. 19.
    M.J. Biercuk, H. Uys, J.W. Britton, A.P. VanDevender, J.J. Bollinger, arXiv:1004.0780
  20. 20.
    D.M. Harber, J.M. Obrecht, J.M. McGuirk, E.A. Cornell, Phys. Rev. A 72, 033610 (2005) CrossRefADSGoogle Scholar
  21. 21.
    L. Greengard, V. Rokhlin, in Vortex Methods, vol. 121 (Springer, Berlin, 1988) Google Scholar
  22. 22.
    K. Nabors, F.T. Korsmeyer, F.T. Leighton, J. White, SIAM J. Sci. Comput. 15, 713 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler, arXiv:0912.0196
  24. 24.
    C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (Chapman and Hall/CRC, Boca Raton, 2002) zbMATHCrossRefGoogle Scholar
  25. 25.
    A.N. Tikhonov, V.A. Arsenin, Solution of Ill-posed Problems (Winston, Washington, 1977) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • G. Huber
    • 1
  • F. Ziesel
    • 1
  • U. Poschinger
    • 1
  • K. Singer
    • 1
  • F. Schmidt-Kaler
    • 1
  1. 1.Institut für QuanteninformationsverarbeitungUniversität UlmUlmGermany

Personalised recommendations