Applied Physics A

, 125:50 | Cite as

Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films

  • Peng Gu
  • Xinghua Zhu
  • Dingyu Yang


ZnO films prepared by sol–gel method and the ultraviolet detectors based on this material have been investigated in this paper. X-ray diffraction (XRD) patterns showed ZnO films present hexagonal wurtzite structure with a preferential orientation of (002) plane, and the crystallite size of films gradually increased from 44.3 to 54.8 nm as the annealing temperature increased from 400 to 600 °C. Ultraviolet–visible (UV–Vis) spectra indicated that the optical band gap decreases gradually with the increase of annealing temperature, and the minimum band gap is 3.06 eV at 600 °C. Photoluminescence (PL) spectra revealed that increasing annealing temperature can significantly reduce the defects and improve the crystallinity. Finally, gold (Au) coplanar interdigital electrodes were deposited on ZnO film surface and used to fabricate the ultraviolet photodetectors. The response performance of the devices improved as the annealing temperature of ZnO films increased, and the fastest response speed with a rise time of 4.172 s and a fall time of 11.012 s was obtained.



This work was supported by Natural Science Foundation of China (NSFC) No. 11675029 and Program of Science and Technology Department of Sichuan Province No. 2018JY0453.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflicts of interest to this work.


  1. 1.
    D. Barreca, D. Bekermann, E. Comini, Sensor. Actuat. B Chem. 149, 1–7 (2010)CrossRefGoogle Scholar
  2. 2.
    S.G. Zhang, X.W. Zhang, J.X. Wang, J.B. You, Phys. Status. Solidi R. 5, 74–76 (2010)CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087–4108 (2010)CrossRefGoogle Scholar
  4. 4.
    D.H. Yoo, T.V. Cuong, V.H. Luan, N.T. Khoa, E.J. Kim, J. Phys. Chem. C 116, 7180–7184 (2012)CrossRefGoogle Scholar
  5. 5.
    T. Wang, Y. Liu, Appl. Surf. Sci. 257, 2341–2345 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, Nanotechnology 14, 11–15 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, J. Electron. Mater. 29, 69–74 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    B.A. Albiss, M. Alakhras, I. Obaidat, Int. J. Environ. Anal. Chem. 95, 339–348 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Gao, W.J. Liu, S.J. Ding, H.L. Lu, AIP Adv. 8, 015015 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    J. Yu, C.X. Shan, X.M. Huang, X.W. Zhang, S.P. Wang, D.Z. Shen, J. Phys. D 46, 305105 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    S.K. Shaikh, S.I. Inamdar, V.V. Ganbavle, J. Alloy. Compd. 664, 242–249 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Portesi, L. Lolli, E. Taralli, Eur. Phys. J. Plus. 130, 45 (2015)CrossRefGoogle Scholar
  13. 13.
    F. Yi, Q. Liao, X. Yan, Z. Bai, Z. Wang, Phys. E. 61, 180–184 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Lany, A. Zunger, Phys. Rev. B 72, 035215 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    M. Kim, J.Y. Leem, J.S. Son, J. Korean. Phys. Soc. 68, 705–709 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    R.J. Nelson, Appl. Phys. Lett. 31, 351–353 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    H. Zhu, J. Iqbal, H. Xu, J. Chem. Phys. 129, 124713 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    P.F. Carcia, R.S. McLean, M.H. Reilly, Appl. Phys. Lett. 82, 1117–1119 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    K. Vanheusden, C.H. Seager, W.L. Warren, J. Lumin. 75, 11–16 (1997)CrossRefGoogle Scholar
  20. 20.
    X. Liu, X. Wu, H. Cao, J. Appl. Phys. 95, 3141–3147 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    S. Fujihara, C. Sasaki, J. Eur. Ceram. Soc. 21, 2109–2112 (2001)CrossRefGoogle Scholar
  22. 22.
    H.I. Abdulgafour, Z. Hassan, N.M. Ahmed, F.K. Yam, J. Appl. Phys. 112, 074510 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    D. Basak, G. Amin, B. Mallik, G.K. Paul, S.K. Sen, J. Cryst. Growth 256, 73–77 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    L.P. Peng, L. Fang, X.F. Yang, Y.J. Li, J. Alloy. Compd. 484, 575–579 (2009)CrossRefGoogle Scholar
  25. 25.
    P. Gu, X.H. Zhu, J.T. Li, H.H. Wu, Appl. Phys. A Mater. 124, 550 (2018)CrossRefGoogle Scholar
  26. 26.
    B. Subramanian, M. Jayachandran, J. Appl. Electrochem. 37, 1069 (2007)CrossRefGoogle Scholar
  27. 27.
    S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, J. Cryst. Growth 287, 78–84 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    J.G. Lv, W.B. Gong, K. Huang, Superlattice. Microst. 50, 98–106 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    S.S. Tneh, Z. Hassan, K.G. Saw, F.K. Yam, H.A. Hassan, Phys. B 405, 2045–2048 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    P. Gu, X.H. Zhu, J.T. Li, H.H. Wu, J. Mater. Sci Mater. Electron. 29, 14635–14642 (2018)CrossRefGoogle Scholar
  31. 31.
    N. Satoh, T. Nakashima, K. Kamikura, Nat. Nanotechnol. 3, 106–111 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    M.S. Wang, E.J. Kim, J.S. Chung, Phys. Stat. Sol. (a) 203, 2418–2425 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    A.K. Zak, M.E. Abrishami, R. Yousefi, Ceram. Int. 37, 393–398 (2011)CrossRefGoogle Scholar
  34. 34.
    R. Rajalakshmi, S. Angappane, Mater. Sci. Eng. B Adv. 178, 1068–1075 (2013)CrossRefGoogle Scholar
  35. 35.
    H.B. Ruan, L. Fang, D.C. Li, M. Saleem, G.P. Qin, Thin Solid Films 519, 5078–5081 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    X.P. Peng, J.Z. Xu, H. Zang, J. Lumin. 128, 297–300 (2008)CrossRefGoogle Scholar
  37. 37.
    L.F. Hu, M. Chen, W.Z. Shan, T.R. Zhan, Adv. Mater. 24, 5872–5877 (2012)CrossRefGoogle Scholar
  38. 38.
    M.S. Wang, E.J. Kim, Phys. Stat. Sol. 203, 2418–2425 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    S. Mokhtari, S. Safa, J. Electron. Mater. 46, 4250–4255 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Optoelectronic TechnologyChengdu University of Information TechnologyChengduPeople’s Republic of China
  2. 2.College of Intelligent ManufacturingSichuan University of Arts and ScienceDazhouPeople’s Republic of China

Personalised recommendations