Skip to main content
Log in

Room-temperature RF magnetron sputtering deposition of hydrogenated Ga-doped ZnO thin films on PET substrates for PDLC devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, hydrogenated gallium-doped zinc oxide (HGZO) thin films were deposited on polyethylene terephthalate substrates at room temperature by RF magnetron sputtering. The effects of RF power and Ar + H2 flow rate on electrical and optical properties of HGZO thin films were investigated systematically. All of HGZO thin films exhibited a high average transmittance of about 77.3–82.9% in the visible range, and the minimum resistivity value reached 7.1 × 10− 4 Ω·cm. Potential application of polymer-dispersed liquid crystal device based on HGZO thin film was also successfully demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Baetens, B.P. Jelle, A. Gustavsen, Sol. Energy Mater. Sol. Cells. 94, 87 (2010)

    Article  Google Scholar 

  2. G. Macrelli, Sol. Energy Mater. Sol. Cells. 39, 123 (1995)

    Article  Google Scholar 

  3. H.H. Khaligh, K. Liew, Y. Han, N.M. Abukhdeir, I.A. Goldthorpe, Sol. Energy Mater. Sol. Cells. 132, 337 (2015)

    Article  Google Scholar 

  4. E.M. Kim, I.S. Choi, J.P. Oh, Y.B. Kim, J.H. Lee, Y.S. Choi, J.D. Cho, Y.B. Kim, G.S. Heo, Jan. J. Appl. Phys. 53, 095505 (2014)

    Article  ADS  Google Scholar 

  5. M. Laurenti, S. Bianco, M. Castellino, N. Garino, A. Virga, C.F. Pirri, P. Mandracci, ACS Appl. Mater. Interfaces. 8, 8032 (2016)

    Article  Google Scholar 

  6. S.C. Dixon, D.O. Scanlon, C.J. Carmalt, I.P. Parkin, J. Mater. Chem. C. 4, 6946 (2016)

    Article  Google Scholar 

  7. S.T. Kim, T.G. Kim, H. Cho, S.J. Yoon, H.S. Kim, J.K. Kim, J. Nanosci. Nanotechnol. 16, 1852 (2016)

    Article  Google Scholar 

  8. T. Minami, T. Miyata, Thin. Solid. Films. 517, 1474 (2008)

    Article  ADS  Google Scholar 

  9. D. Chen, J. Liang, C. Liu, G. Saldanha, F. Zhao, K. Tong, J. Liu, Q. Pei, Adv. Funct. Mater. 25, 7512 (2015)

    Article  Google Scholar 

  10. Q. Huang, W. Shen, X. Fang, G. Chen, Y. Yang, J. Huang, R. Tan, W. Song, ACS Appl. Mater. Interfaces. 7, 4299 (2015)

    Article  Google Scholar 

  11. L. Huang, B. Li, N. Ren, Ceram. Int. 42, 7246 (2016)

    Article  Google Scholar 

  12. G. Socol, M. Socol, N. Stefan, E. Axente, G. Popescu-Pelin, D. Craciun, L. Duta, C.N. Mihailescu, I.N. Mihailescu, A. Stanculescu, D. Visan, V. Sava, A.C. Galca, C.R. Luculescu, V. Craciun. Appl. Surf. Sci. 260, 42 (2012)

    Article  ADS  Google Scholar 

  13. N. Akin, U.C. Baskose, B. Kinaci, M. Cakmak, S. Ozcelik, Appl. Phys. A. 119, 965 (2015)

    Article  ADS  Google Scholar 

  14. K.T. Huang, H.C. Chen, P.W. Cheng, J.M. Chang, Jan. J. Appl. Phys. 55, 01AA17 (2015)

    Article  Google Scholar 

  15. S. Fernández, J.D. Santos, C. Munuera, M. García-Hernández, F.B. Naranjo, Sol. Energy Mater. Sol. Cells. 133, 170 (2015)

    Article  Google Scholar 

  16. K. Zhu, Y. Yang, T. Wei, R. Tan, P. Cui, W. Song, K.L. Choy, Mater. Lett. 106, 363 (2013)

    Article  Google Scholar 

  17. D. Gaspar, L. Pereira, K. Gehrke, B. Galler, E. Fortunato, R. Martins, Sol. Energy. Mater. Sol. Cells. 163, 255 (2017)

    Article  Google Scholar 

  18. C.G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000)

    Article  ADS  Google Scholar 

  19. B.L. Zhu, J. Wang, S.J. Zhu, J. Wu, R. Wu, D.W. Zeng, C.S. Xie, Thin. Solid. Films. 519, 3809 (2011)

    Article  ADS  Google Scholar 

  20. J.K. Kim, J.M. Lee, J.W. Lim, J.H. Kim, S.J. Yun, Jan. J. Appl. Phys. 49, 04DP09 (2010)

    Google Scholar 

  21. M. Dosmailov, L.N. Leonat, J. Patek, D. Roth, P. Bauer, M.C. Scharber, N.S. Sariciftci, J.D. Pedarnig, Thin. Solid. Films. 591, 97 (2015)

    Article  ADS  Google Scholar 

  22. C. Guillén, J. Herrero, Phys. Status. Solidi. A. 206, 1531 (2009)

    Article  ADS  Google Scholar 

  23. S.S. Wang, C.B. Yang, F.J. Shiou, C.Y. Hsu, J. Comput. Theor. Nanosci. 11, 751 (2014)

    Article  Google Scholar 

  24. H. Fujiwara, M. Kondo, Phys. Rev. B. 71, 075109 (2005)

    Article  ADS  Google Scholar 

  25. L. Wang, J.S. Swensen, E. Polikarpov, D.W. Matson, C.C. Bonham, W. Bennett, D.J. Gaspar, A.B. Padmaperuma, Org. Electron. 11, 1555 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61774160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoting Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhou, T., Shi, F. et al. Room-temperature RF magnetron sputtering deposition of hydrogenated Ga-doped ZnO thin films on PET substrates for PDLC devices. Appl. Phys. A 124, 850 (2018). https://doi.org/10.1007/s00339-018-2276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2276-z

Navigation