Advertisement

Applied Physics A

, 124:604 | Cite as

Detective quantum efficiency (DQE) of high X-ray absorption Lu2O3:Eu thin screens: the role of shape and size of nano- and micro-grains

  • I. E. Seferis
  • C. Michail
  • J. Zeler
  • N. Kalyvas
  • I. Valais
  • G. Fountos
  • A. Bakas
  • I. Kandarakis
  • E. Zych
  • G. S. Panayiotakis
Article
  • 15 Downloads

Abstract

The study concerned with the current work is to provide a comparative investigation of the detective quantum efficiency (DQE) of Lu2O3:Eu phosphor screens, prepared with different grain shape/size grains, specifically spherical grains, with sizes 50 nm, 200 nm, and 5 µm and two screens with rod-like shape grains and sizes 500 nm and 1–8 µm. The phosphors were deposited by the sedimentation method. It was found that the influence of the grains shape on image quality is more important than the grain size. The rod-like grains show higher noise levels, at low frequencies. The influence of grains size, between 50 nm, 200 nm, and 5 µm, is negligible on the normalize noise power spectrum (NNPS) at higher spatial frequencies due to structural non-uniformities. The spherical grains exhibited higher DQE values.

References

  1. 1.
    C. Michail, V. Spyropoulou, G. Fountos, N. Kalyvas, I. Valais, I. Kandarakis, G. Panayiotakis, G, ΙΕΕΕ Trans. Nucl. Sci. 58, 314 (2011)ADSGoogle Scholar
  2. 2.
    B. Arnold, The Physics of Medical Imaging: Recording System, Measurements and Techniques (ed. by A. Haus (American Association of Physicists in Medicine, New York, 1979), pp. 30–71Google Scholar
  3. 3.
    B. Cha, J. Kim, T. Kim, C. Sim, G. Cho, Radiat. Meas. 45, 742 (2010)CrossRefGoogle Scholar
  4. 4.
    C. Michail, I. Valais, I. Seferis, N. Kalyvas, G. Fountos, I. Kandarakis, Radiat. Meas. 74, 39 (2015)CrossRefGoogle Scholar
  5. 5.
    N. Kalyvas, P. Liaparinos, C. Michail, S. David, G. Fountos, M. Wojtowicz, I. Kandarakis, Appl. Phys. A 106, 131 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S. David, C. Michail, I. Seferis, I. Valais, G. Fountos, P. Liaparinos, I. Kandarakis, N. Kalyvas, J. Lumin. 169, 706 (2016)CrossRefGoogle Scholar
  7. 7.
    C. Michail, I. Valais, I. Seferis, N. Kalyvas, S. David, G. Fountos, I. Kandarakis, Radiat. Meas. 70, 59 (2014)CrossRefGoogle Scholar
  8. 8.
    I. Seferis, C. Michail, I. Valais, G. Fountos, N. Kalyvas, F. Stromatia, G. Oikonomou, I. Kandarakis, G. Panayiotakis, Nucl. Instrum. Methods Phys. Res. A 729, 307 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    I. Seferis, J. Zeler, C. Michail, I. Valais, G. Fountos, N. Kalyvas, A. Bakas, I. Kandarakis, E. Zych, Appl. Phys. A 122, 526 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    C.M. Michail, G.P. Fountos, P.F. Liaparinos, N.E. Kalyvas, I. Valais, I.S. Kandarakis, G.S. Panayiotakis, Med. Phys. 37, 3694 (2010)CrossRefGoogle Scholar
  11. 11.
    C. Michail, I. Valais, G. Fountos, A. Bakas, C. Fountzoula, N. Kalyvas, A. Karabotsos, I. Sianoudis, I. Kandarakis, Measurement 120, 213 (2018)CrossRefGoogle Scholar
  12. 12.
    G. Saatsakis, I. Valais, C. Michail, C. Fountzoula, G. Fountos, V. Koukou, N. Martini, N. Kalyvas, A. Bakas, I. Sianoudis, I. Kandarakis, G.S. Panayiotakis, J. Phys. Conf. Ser. 931, 012030 (2017)CrossRefGoogle Scholar
  13. 13.
    I. Seferis, J. Zeler, C. Michail, S. David, I. Valais, G. Fountos, N. Kalyvas, A. Bakas, I. Kandarakis, E. Zych, G. Panayiotakis, Result. Phys. 7, 980 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    J. West, N. Halas, Annu. Rev. Biomed. Eng. 5, 285 (2003)CrossRefGoogle Scholar
  15. 15.
    J. Dhanaraj, R. Jagannathan, T. Kutty, L. Chung-Hsin, J. Phys. Chem. B. 105, 11098 (2001)CrossRefGoogle Scholar
  16. 16.
    I. Valais, C. Michail, C. Fountzoula, D. Tseles, P. Yannakopoulos, D. Nikolopoulos, A. Bakas, G. Fountos, G. Saatsakis, I. Sianoudis, I. Kandarakis, G. Panayiotakis, Result. Phys. 7, 1734 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    P. Liaparinos, J. Biomed. Opt. 17, 126013 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    P. Liaparinos, N. Kalyvas, E. Katsiotis, I. Kandarakis, J. Instrum. 11, 10001 (2016)CrossRefGoogle Scholar
  19. 19.
    P. Liaparinos, Appl. Phys. A 122, 1 (2016)CrossRefGoogle Scholar
  20. 20.
    G. Poludniowski, P. Evans, Med. Phys. 40, 041905 (2013)CrossRefGoogle Scholar
  21. 21.
    V. Cuplov, I. Buvat, F. Pain, S. Jan, Biomed. Opt. 19, 026004 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Star-Lack, M. Sun, A. Meyer, D. Morf, D. Constantin, R. Fahrig, E. Abel, Med. Phys. 41, 031916 (2014)CrossRefGoogle Scholar
  23. 23.
    International Atomic Energy Agency (IAEA), Technical Report Series No. 457 (printed by the IAEA in Austria September 2007 STI/PUB/1294), p. 20Google Scholar
  24. 24.
    Z. Zeler, L.B. Jerzykiewicz, E. Zych, Materials 7, 7059 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    International Electrotechnical Commission, Medical Electrical Equipment-Characteristics of Digital X-Ray Imaging Devices, IEC 62220-1-2 (Determination-Mammography Detectors, Geneva, 2005)Google Scholar
  26. 26.
    A.C. Konstantinidis, M.B. Szafraniec, R.D. Speller, A. Olivo, Nucl. Instrum. Methods Phys. Res. A 689, 12 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    B. Donini, S. Rivetti, N. Lanconelli, M. Bertolini, Med. Phys. 41, 051903 (2014)CrossRefGoogle Scholar
  28. 28.
    C. Michail, I. Valais, N. Martini, V. Koukou, N. Kalyvas, A. Bakas, I. Kandarakis, G. Fountos, Radiat. Meas. 94, 8 (2016)CrossRefGoogle Scholar
  29. 29.
    I. Seferis, C. Michail, J. Zeler, I. Valais, G. Fountos, N. Kalyvas, A. Bakas, I. Kandarakis, E. Zych, G. Panayiotakis, J. Phys. Conf. Ser. 931, 012032 (2017)CrossRefGoogle Scholar
  30. 30.
    C. Michail, G. Fountos, S. David, I. Valais, A. Toutountzis, N. Kalyvas, I. Kandarakis, G. Panayiotakis, Meas. Sci. Technol. 20, 104008 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    G. Giakoumakis, C. Nomicos, E. Yiakoumakis, E. Evangelou, Phys. Med. Biol. 35, 1017 (1990)CrossRefGoogle Scholar
  32. 32.
    I. Kandarakis, D. Cavouras, G. Panayiotakis, C. Nomicos, Phys. Med. Biol. 42, 1351 (1997)CrossRefGoogle Scholar
  33. 33.
    N. Kalivas, I. Valais, D. Nikolopoulos, A. Konstantinidis, A. Gaitanis, D. Cavouras, C.D. Nomicos, G. Panayiotakis, I. Kandarakis, Appl. Phys. A 89, 443 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    V. Koukou, N. Martini, G. Fountos, C. Michail, A. Bakas, G. Oikonomou, I. Kandarakis, G. Nikiforidis, Result. Phys. 7, 1634 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    I. Kandarakis, D. Cavouras, E. Kanellopoulos, C. Nomicos, G. Panayiotakis, Med. Biol. Eng. Comput. 37, 25 (1999)CrossRefGoogle Scholar
  36. 36.
    J.T. Dobbins III, in Handbook of Medical Imaging, Vol. 1, Physics and Psycophysics, ed. by B.J. Beutel, H.L. Kundel, R.L.Van Metter (SPIE Press, Bellingham, 2000), p. 161CrossRefGoogle Scholar
  37. 37.
    N. Marshall, Phys. Med. Biol. 51(10), 2441 (2006)CrossRefGoogle Scholar
  38. 38.
    D. Cavouras, I. Kandarakis, G. Panayiotakis, C. Nomicos, Med. Biol. Eng. Comput. 40, 273 (2002)CrossRefGoogle Scholar
  39. 39.
    C. Helzel, A. Tzavaras, A Kinetic Model for the Sedimentation of Rod-Like Particles. https://arxiv.org/abs/1510.03235. Accessed 25 July 2018
  40. 40.
    X. Li, J. Appl. Math. Phys. 1, 8 (2013)CrossRefGoogle Scholar
  41. 41.
    E. Zych, J. Phys. Condens. Matter 14, 5637 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Physics, Medical SchoolUniversity of PatrasPatrasGreece
  2. 2.Faculty of ChemistryUniversity of WroclawWroclawPoland
  3. 3.Department of Biomedical EngineeringUniversity of West AtticaAthensGreece
  4. 4.Department of Biomedical SciencesUniversity of West AtticaAthensGreece

Personalised recommendations