Skip to main content
Log in

Anisotropic optical distribution of powder phosphor materials applied in medical imaging instrumentation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Image quality for medical purposes is related to the useful diagnostic information that can be extracted from an image. The performance of indirect X-ray detectors, which in turn affects the quality of the medical image, can be significantly influenced by the characteristics of the phosphor, employed to convert incident radiation into emitted light. Given the technological and medical importance of phosphor materials, understanding the fundamental effects of optical anisotropy is crucial. The purpose of the present paper was to examine the influence of optical anisotropy in optical diffusion within the powder phosphor-based X-ray detectors. The present investigation was based on Mie scattering theory and Monte Carlo simulation techniques. The variation of the anisotropy factor was examined for: (1) light wavelengths in the range 400–700 nm, (2) particle refractive index between 1.5 and 2 and (3) three regions of particle sizes: nanoscale (from 10 up to 100 nm), submicron scale (from 100 nm up to 1 μm), and microscale (from 1 up to 10 μm). In addition, optical diffusion performance was carried out considering: (a) anisotropy factor values 0.2, 0.5, 0.8 which represent different aspects of light propagation after scattering and (b) phosphors of different layer thickness, 100 (thin layer) and 300 μm (thick layer), respectively. Results showed that the highest variation on the anisotropy factor was observed in the submicron scale, and, in particular, for grain diameters between 100 and 600 nm (increase from 0.1 up to 0.8). In addition, Monte Carlo simulations showed that the spread of light photons decreases (i.e., high spatial resolution) with the decrease in the anisotropy factor. In particular, the FWHM was found to decrease with the anisotropy factor: (1) 11.4 % at 100 μm and 4.2 %, at 300 μm layer thickness, for light extinction coefficient 0.217 μm−1 and (2) 1.9 % at 100 μm and 2.0 %, at 300 μm layer thickness, for light extinction coefficient 3 μm−1. The present work indicated that lateral spreading is affected by the anisotropy factor. However, this effect is more dominant for low values of light extinction coefficient of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.M. Johnson, A. Lagendijk, J. Biomed. Opt. 14, 054036 (2009)

    Article  ADS  Google Scholar 

  2. J.T. Dobbins III, Image quality metrics for digital systems, in Handbook of Medical Imaging, vol. 1, Physics and Psychophysics, ed. by J. Beutel, H.L. Kundel, R.L. Van Metter (SPIE, Bellingham, 2000), pp. 161–229

    Google Scholar 

  3. P.F. Liaparinos, J. Biomed. Opt. 17, 126013 (2012)

    Article  ADS  Google Scholar 

  4. N. Kalyvas, P. Liaparinos, C. Michail, S. David, G. Fountos, M. Wojtowicz, E. Zych, I. Kandarakis, Appl. Phys. A 106, 131–136 (2012)

    Article  ADS  Google Scholar 

  5. P.R. Granfors, D. Albagli, J. Soc. Inf. Disp. 17, 535–542 (2009)

    Article  Google Scholar 

  6. W. Zhao, G. Ristic, J.A. Rowlands, Med. Phys. 31, 2594–2605 (2004)

    Article  Google Scholar 

  7. S.M. Gruner, M.W. Tate, E.F. Eikenberry, Rev. Sci. Instrum. 73, 2816–2842 (2002)

    ADS  Google Scholar 

  8. G.E. Giakoumakis, D.M. Miliotis, Phys. Med. Biol. 30, 21–29 (1985)

    Article  Google Scholar 

  9. A.D. Maidment, M.J. Yaffe, Phys. Med. Biol. 40, 877–889 (1995)

    Article  Google Scholar 

  10. A. Kienle, Phys. Rev. Lett. 98, 218104 (2007)

    Article  ADS  Google Scholar 

  11. D.W.O. Rogers, Phys. Med. Biol. 51, R287–R301 (2006)

    Article  ADS  Google Scholar 

  12. G.G. Poludniowski, P.M. Evans, Med. Phys. 40, 041905 (2013)

    Article  Google Scholar 

  13. V. Cuplov, I. Buvat, F. Pain, S. Jan, J. Biomed. Opt. 19, 026004 (2014)

    Article  ADS  Google Scholar 

  14. J. Star-Lack, M. Sun, A. Meyer, D. Morf, D. Constantin, R. Fahriq, E. Abel, Med. Phys. 41, 031916 (2014)

    Article  Google Scholar 

  15. P. Liaparinos, I. Kandarakis, D. Cavouras, H. Delis, G. Panayiotakis, Med. Phys. 33, 4502–4514 (2006)

    Article  Google Scholar 

  16. P. Liaparinos, I. Kandarakis, Med. Phys. 36, 1985–1997 (2009)

    Article  Google Scholar 

  17. P. Liaparinos, K. Bliznakova, Med. Phys. 39, 6638–6651 (2012)

    Article  Google Scholar 

  18. P.F. Liaparinos, Med. Phys. 40, 101911 (2013)

    Article  Google Scholar 

  19. P. Liaparinos, I. Kandarakis, in Proceedings of SPIE (2013), p. 8668

  20. N. Kalyvas, P. Liaparinos, in Proceedings of SPIE (2014), p. 9033

  21. P. Liaparinos, I. Kandarakis, in Proceedings of SPIE (2015), p. 9531

  22. P. Liaparinos, I. Kandarakis, EuroNanoForum—7th international conference on nanotechnology and advanced materials. Riga, Latvia (2015)

  23. P.F. Liaparinos, J. Lumin. 146, 193–198 (2014)

    Article  Google Scholar 

  24. J.T. Bushberg, J.A. Seibert, E.M. Leidholdt Jr., J.M. Boone, The Essential Physics of Medical Imaging, 3rd edn. (Lippincott Williams & Wilkins, Philadelphia, 2012)

    Google Scholar 

  25. H. Du, Mie-scattering calculation. Appl. Opt. 43, 1951–1956 (2004)

    Article  ADS  Google Scholar 

  26. S.A. Prahl, Mie scattering calculator (Oregon Medical Laser Center, Portland, 2009). http://omlc.ogi.edu/calc/mie_calc.html

  27. P. Liaparinos, I. Kandarakis, Med. Phys. 38, 4440–4450 (2011)

    Article  Google Scholar 

  28. G.G. Poludniowski, P.M. Evans, Med. Phys. 40, 041904 (2013)

    Article  Google Scholar 

  29. A. Rowlands, J. Yorkston, Flat panel detectors for digital radiography, in Handbook of Medical Imaging, vol. 1, Physics and Psychophysics, ed. by J. Beutel, H.L. Kundel, R.L. Van Metter (SPIE, Bellingham, 2000), pp. 223–328

    Google Scholar 

  30. H.C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957)

    Google Scholar 

  31. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  32. P.F. Liaparinos, Phys. Med. Biol. 60, 8885–8899 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Liaparinos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaparinos, P.F. Anisotropic optical distribution of powder phosphor materials applied in medical imaging instrumentation. Appl. Phys. A 122, 93 (2016). https://doi.org/10.1007/s00339-015-9583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9583-4

Keywords

Navigation