Skip to main content
Log in

X-ray spectroscopic and stroboscopic analysis of pulsed-laser ablation of Zn and its oxidation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pulsed laser ablation in liquids (PLAL) as an attractive process for ligand-free nanoparticle synthesis represents a multiscale problem to understand the mechanisms and achieve control. Atomic and nanoscale processes interacting with macroscale dynamics in the liquid demand for sensitive tools for in-situ and structural analysis. By adding X-ray methods, we enlarge the available information on millimeter-scale bubble formation down to atomic-scale nanoparticle reactions. X-ray spectroscopy (XAS) can resolve the chemical speciation of the ablated material during the ablation from a zinc wire target showing a first oxidation step from zinc to zinc oxide within some 10 min followed by a slower reaction to hydrozincite. X-ray imaging investigations also give additional information on the bubble dynamics as we demonstrate by comparing the microsecond radiography and optical stroboscopy. We show different features of the detachment of the ablation bubble from a free wire. The location of the first collapse occurs in front of the target. While a first rebound bubble possesses an homogeneous interior, the subsequent rebound consists merely of a cloud of microbubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  2. H. Usui, Y. Shimizu, T. Sasaki, N. Koshizaki, J. Phys. Chem. B 109, 120 (2005)

    Article  Google Scholar 

  3. J.M. Cho, J.K. Song, S.M. Park, Bull. Korean Chem. Soc. 30, 1616 (2009)

    Article  Google Scholar 

  4. P. Wagener, A. Schwenke, B.N. Chichkov, S. Barcikowski, J. Phys. Chem. C 114, 7618 (2010)

    Article  Google Scholar 

  5. P. Camarda, L. Vaccaro, F. Messina, M. Cannas, Appl. Phys. Lett. 107, 013103 (2015)

    Article  ADS  Google Scholar 

  6. P. Camarda, F. Messina, L. Vaccaro, G. Buscarino, S. Agnello, F.M. Gelardi, M. Cannas, J. Appl. Phys. 120, 124312 (2016)

    Article  ADS  Google Scholar 

  7. A. Fojtik, A. Henglein, Ber. Bunsenges. Phys. Chem. 97, 1493 (1993)

    Article  Google Scholar 

  8. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem B 105, 5114 (2001)

    Article  Google Scholar 

  9. G. Compagnini, A.A. Scalisi, O. Puglisi, Phys. Chem. Chem. Phys. 4, 27872791 (2002)

    Article  Google Scholar 

  10. S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, G. Račiukaitis, Appl. Phys. Lett. 91, 083113 (2007)

    Article  ADS  Google Scholar 

  11. H. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mat. 22, 1333 (2012)

    Article  Google Scholar 

  12. H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, J. Phys. Chem. B 109, 18260 (2005)

    Article  Google Scholar 

  13. M. Fischer, J. Hormes, G. Marzun, P. Wagener, U. Hagemann, S. Barcikowski, Langmuir 32, 8793 (2016)

    Article  Google Scholar 

  14. R. Streubel, S. Barcikowski, B. Gökce, Opt. Lett. 41, 1486 (2016)

    Article  ADS  Google Scholar 

  15. S. Kohsakowski, B. Gökce, R. Tanabe, P. Wagener, A. Plech, Y. Ito, S. Barcikowski, Phys. Chem. Chem. Phys. 18, 16585 (2016)

    Article  Google Scholar 

  16. S. Ibrahimkutty, P. Wagener, A. Menzel, A. Plech, S. Barcikowski, Appl. Phys. Lett. 101, 103104 (2012)

    Article  ADS  Google Scholar 

  17. P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3068 (2013)

    Article  Google Scholar 

  18. K. Sasaki, T. Nakano, W. Soliman, N. Takada, Appl. Phys. Express 2, 046501 (2009)

    Article  ADS  Google Scholar 

  19. A. De Giacomo, M. DellAglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G.C. Messina, G. Compagnini, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3083–3092 (2013)

    Article  Google Scholar 

  20. T. Sakka, S. Iwanaga, Y.H. Ogata, A. Matsunawa, T. Takemoto, J. Chem. Phys. 112, 8645 (2000)

    Article  ADS  Google Scholar 

  21. A. Tamura, A. Matsumoto, K. Fukami, N. Nishi, T. Sakka, J. Appl. Phys. 117, 173304 (2015)

    Article  ADS  Google Scholar 

  22. M.R. Gavrilović, M. Cvejić, V. Lazić, S. Jovićević, Phys. Chem. Chem. Phys. 18, 14629 (2016)

    Article  Google Scholar 

  23. L. Lavisse, J.L. Le Garrec, L. Hallo, J.M. Jouvard, S. Charles, J. Perez, J.B.A. Mitchell, J. Decloux, M. Girault, V. Potin, H. Andrzejewski, M.C.M. de Lucas, S. Bourgeois, Appl. Phys. Lett. 100, 164103 (2012)

    Article  ADS  Google Scholar 

  24. S. Ibrahimkutty, P. Wagener, T. dos Santos Rolo, D. Karpov, A. Menzel, T. Baumbach, S. Barcikowski, A. Plech, Sci. Rep. 5, 16313 (2015)

    Article  ADS  Google Scholar 

  25. S. Reich, P. Schönfeld, P. Wagener, A. Letzel, S. Ibrahimkutty, B. Gökce, S. Barcikowski, A. Menzel, T. dos Santos Rolo, A. Plech, J. Coll. Interf. Sci. 489, 106 (2017)

    Article  ADS  Google Scholar 

  26. T. dos Santos Rolo, A. Ershov, T. van de Kamp, T. Baumbach, Proc. Natl. Acad. Sci USA 111, 3921–3926 (2014)

    Article  ADS  Google Scholar 

  27. B. Ravel, M. Newville, J. Synchrotron Rad. 12, 537 (2005)

    Article  Google Scholar 

  28. M. Schmidt, R. Pahl, V. Srajer, S. Anderson, Z. Ren, H. Ihee, S. Rajagopal, K. Moffat, Proc. Natl. Acad. Sci. 101, 4799 (2004)

    Article  ADS  Google Scholar 

  29. M.F. Lengke, B. Ravel, M.E. Fleet, G. Wanger, R.A. Gordon, G. Southam, Environ. Sci. Technol. 40, 6304 (2006)

    Article  ADS  Google Scholar 

  30. S. Reich, P. Schönfeld, A. Letzel, S. Kohsakowski, M. Olbinado, B. Gökce, S. Barcikowski, A. Plech, Chem. Phys. Chem. 18, 1084 (2017)

    Article  Google Scholar 

  31. A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorčič, N. Nishi, K. ichi Amano, K. Fukami, T. Sakka, Appl. Phys. A 122, 234 (2016)

    Article  ADS  Google Scholar 

  32. E.A. Brujan, G.S. Keen, A. Vogel, J.R. Blake, Phys. Fluids 14, 85 (2002)

    Article  ADS  Google Scholar 

  33. A. Shima, Y. Sato, Ingenieur. Archiv. 48, 85–95 (1979)

    Article  ADS  Google Scholar 

  34. G.C. Messina, P. Wagener, R. Streubel, A.D. Giacomo, A. Santagata, G. Compagnini, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3093–3098 (2013)

    Article  Google Scholar 

  35. S. Scaramuzza, M. Zerbetto, V. Amendola, J. Phys. Chem. C 120, 9453 (2016)

    Article  Google Scholar 

  36. S. Kohsakowski, A. Santagata, M. DellAglio, A. de Giacomo, S. Barcikowski, P. Wagener, B. Gökce, Appl. Surf. Sci. 403, 487 (2017)

    Article  ADS  Google Scholar 

  37. M.R. Kalus, N. Bärsch, R. Streubel, E. Gökce, S. Barcikowski, B. Gökce, Phys. Chem. Chem. Phys. 19, 7112 (2017)

    Article  Google Scholar 

  38. S. Sasaki, H. Ikenoue, T. Tsuji, Y. Ishikawa, N. Koshisaki, Chem. Phys. Chem. 18, 1101 (2017)

    Article  Google Scholar 

  39. M. Procházka, P. Mojzeš, J. Štěpánek, B. Vlcková, P.Y. Turpin, Anal. Chem. 69, 5103 (1997)

    Article  Google Scholar 

  40. B. Gökce, D.D. van ’t Zand, A. Menendez-Manjon, S. Barcikowski, Chem. Phys. Lett. 626, 96 (2015)

    Article  ADS  Google Scholar 

  41. S. Jendrzej, B. Gökce, V. Amendola, S. Barcikowski, J. Coll. Interf. Sci. 463, 299 (2016)

    Article  ADS  Google Scholar 

  42. P. D’Angelo, A. Zitolo, F. Ceccacci, R. Caminiti, G. Aquilanti, J. Chem. Phys. 135, 154509 (2011)

    Article  ADS  Google Scholar 

  43. A. Moezzi, M. Cortie, A. McDonagh, Dalton Trans. 40, 4871 (2011)

    Article  Google Scholar 

  44. P. Kowalik, M. Konkol, K. Antoniak-Jurak, W. Próchniak, P. Wierciocha, M. Rawski, T. Borowiecki, Mat. Res. Bull. 65, 149 (2015)

    Article  Google Scholar 

  45. C.L.B.C.W.B.B.G. Marzun, H. Bönnemann, Chem. Phys. Chem. 18, 1175 (2017)

    Article  Google Scholar 

  46. R.B. Reed, D. Ladner, C.P. Higgins, P. Westerhoff, J. Ranville, Environ. Toxicol. Chem. 31, 93 (2012)

    Article  Google Scholar 

  47. A. Letzel, B. Gökce, P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, S. Barcikowski, J. Phys. Chem. C 121, 5356 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Deutsche Forschungsgemeinschaft under contrast BA 3580/15-1 and PL325/8-1 and through research within ”Matter, Materials to Life” of the Helmholtz Association. We wish to thank M. Zuber and T. Spangenberg for support during experiments at the synchrotron ANKA at KIT for provision of beamtime and M. Winterer for the access to the X-ray diffractometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Plech.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 26,750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reich, S., Göttlicher, J., Letzel, A. et al. X-ray spectroscopic and stroboscopic analysis of pulsed-laser ablation of Zn and its oxidation. Appl. Phys. A 124, 71 (2018). https://doi.org/10.1007/s00339-017-1503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1503-3

Navigation