Advertisement

Applied Physics A

, 124:71 | Cite as

X-ray spectroscopic and stroboscopic analysis of pulsed-laser ablation of Zn and its oxidation

  • Stefan Reich
  • Jörg Göttlicher
  • Alexander Letzel
  • Bilal Gökce
  • Stephan Barcikowski
  • Tomy dos Santos Rolo
  • Tilo Baumbach
  • Anton Plech
Article

Abstract

Pulsed laser ablation in liquids (PLAL) as an attractive process for ligand-free nanoparticle synthesis represents a multiscale problem to understand the mechanisms and achieve control. Atomic and nanoscale processes interacting with macroscale dynamics in the liquid demand for sensitive tools for in-situ and structural analysis. By adding X-ray methods, we enlarge the available information on millimeter-scale bubble formation down to atomic-scale nanoparticle reactions. X-ray spectroscopy (XAS) can resolve the chemical speciation of the ablated material during the ablation from a zinc wire target showing a first oxidation step from zinc to zinc oxide within some 10 min followed by a slower reaction to hydrozincite. X-ray imaging investigations also give additional information on the bubble dynamics as we demonstrate by comparing the microsecond radiography and optical stroboscopy. We show different features of the detachment of the ablation bubble from a free wire. The location of the first collapse occurs in front of the target. While a first rebound bubble possesses an homogeneous interior, the subsequent rebound consists merely of a cloud of microbubbles.

Notes

Acknowledgements

This work is supported by Deutsche Forschungsgemeinschaft under contrast BA 3580/15-1 and PL325/8-1 and through research within ”Matter, Materials to Life” of the Helmholtz Association. We wish to thank M. Zuber and T. Spangenberg for support during experiments at the synchrotron ANKA at KIT for provision of beamtime and M. Winterer for the access to the X-ray diffractometer.

Supplementary material

Supplementary material 1 (AVI 26,750 kb)

References

  1. 1.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    H. Usui, Y. Shimizu, T. Sasaki, N. Koshizaki, J. Phys. Chem. B 109, 120 (2005)CrossRefGoogle Scholar
  3. 3.
    J.M. Cho, J.K. Song, S.M. Park, Bull. Korean Chem. Soc. 30, 1616 (2009)CrossRefGoogle Scholar
  4. 4.
    P. Wagener, A. Schwenke, B.N. Chichkov, S. Barcikowski, J. Phys. Chem. C 114, 7618 (2010)CrossRefGoogle Scholar
  5. 5.
    P. Camarda, L. Vaccaro, F. Messina, M. Cannas, Appl. Phys. Lett. 107, 013103 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    P. Camarda, F. Messina, L. Vaccaro, G. Buscarino, S. Agnello, F.M. Gelardi, M. Cannas, J. Appl. Phys. 120, 124312 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    A. Fojtik, A. Henglein, Ber. Bunsenges. Phys. Chem. 97, 1493 (1993)CrossRefGoogle Scholar
  8. 8.
    F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem B 105, 5114 (2001)CrossRefGoogle Scholar
  9. 9.
    G. Compagnini, A.A. Scalisi, O. Puglisi, Phys. Chem. Chem. Phys. 4, 27872791 (2002)CrossRefGoogle Scholar
  10. 10.
    S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, G. Račiukaitis, Appl. Phys. Lett. 91, 083113 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    H. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mat. 22, 1333 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Zeng, W. Cai, Y. Li, J. Hu, P. Liu, J. Phys. Chem. B 109, 18260 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Fischer, J. Hormes, G. Marzun, P. Wagener, U. Hagemann, S. Barcikowski, Langmuir 32, 8793 (2016)CrossRefGoogle Scholar
  14. 14.
    R. Streubel, S. Barcikowski, B. Gökce, Opt. Lett. 41, 1486 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    S. Kohsakowski, B. Gökce, R. Tanabe, P. Wagener, A. Plech, Y. Ito, S. Barcikowski, Phys. Chem. Chem. Phys. 18, 16585 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Ibrahimkutty, P. Wagener, A. Menzel, A. Plech, S. Barcikowski, Appl. Phys. Lett. 101, 103104 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3068 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Sasaki, T. Nakano, W. Soliman, N. Takada, Appl. Phys. Express 2, 046501 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. De Giacomo, M. DellAglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G.C. Messina, G. Compagnini, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3083–3092 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Sakka, S. Iwanaga, Y.H. Ogata, A. Matsunawa, T. Takemoto, J. Chem. Phys. 112, 8645 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    A. Tamura, A. Matsumoto, K. Fukami, N. Nishi, T. Sakka, J. Appl. Phys. 117, 173304 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    M.R. Gavrilović, M. Cvejić, V. Lazić, S. Jovićević, Phys. Chem. Chem. Phys. 18, 14629 (2016)CrossRefGoogle Scholar
  23. 23.
    L. Lavisse, J.L. Le Garrec, L. Hallo, J.M. Jouvard, S. Charles, J. Perez, J.B.A. Mitchell, J. Decloux, M. Girault, V. Potin, H. Andrzejewski, M.C.M. de Lucas, S. Bourgeois, Appl. Phys. Lett. 100, 164103 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    S. Ibrahimkutty, P. Wagener, T. dos Santos Rolo, D. Karpov, A. Menzel, T. Baumbach, S. Barcikowski, A. Plech, Sci. Rep. 5, 16313 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    S. Reich, P. Schönfeld, P. Wagener, A. Letzel, S. Ibrahimkutty, B. Gökce, S. Barcikowski, A. Menzel, T. dos Santos Rolo, A. Plech, J. Coll. Interf. Sci. 489, 106 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    T. dos Santos Rolo, A. Ershov, T. van de Kamp, T. Baumbach, Proc. Natl. Acad. Sci USA 111, 3921–3926 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    B. Ravel, M. Newville, J. Synchrotron Rad. 12, 537 (2005)CrossRefGoogle Scholar
  28. 28.
    M. Schmidt, R. Pahl, V. Srajer, S. Anderson, Z. Ren, H. Ihee, S. Rajagopal, K. Moffat, Proc. Natl. Acad. Sci. 101, 4799 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    M.F. Lengke, B. Ravel, M.E. Fleet, G. Wanger, R.A. Gordon, G. Southam, Environ. Sci. Technol. 40, 6304 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    S. Reich, P. Schönfeld, A. Letzel, S. Kohsakowski, M. Olbinado, B. Gökce, S. Barcikowski, A. Plech, Chem. Phys. Chem. 18, 1084 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorčič, N. Nishi, K. ichi Amano, K. Fukami, T. Sakka, Appl. Phys. A 122, 234 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    E.A. Brujan, G.S. Keen, A. Vogel, J.R. Blake, Phys. Fluids 14, 85 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    A. Shima, Y. Sato, Ingenieur. Archiv. 48, 85–95 (1979)ADSCrossRefGoogle Scholar
  34. 34.
    G.C. Messina, P. Wagener, R. Streubel, A.D. Giacomo, A. Santagata, G. Compagnini, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3093–3098 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Scaramuzza, M. Zerbetto, V. Amendola, J. Phys. Chem. C 120, 9453 (2016)CrossRefGoogle Scholar
  36. 36.
    S. Kohsakowski, A. Santagata, M. DellAglio, A. de Giacomo, S. Barcikowski, P. Wagener, B. Gökce, Appl. Surf. Sci. 403, 487 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    M.R. Kalus, N. Bärsch, R. Streubel, E. Gökce, S. Barcikowski, B. Gökce, Phys. Chem. Chem. Phys. 19, 7112 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Sasaki, H. Ikenoue, T. Tsuji, Y. Ishikawa, N. Koshisaki, Chem. Phys. Chem. 18, 1101 (2017)CrossRefGoogle Scholar
  39. 39.
    M. Procházka, P. Mojzeš, J. Štěpánek, B. Vlcková, P.Y. Turpin, Anal. Chem. 69, 5103 (1997)CrossRefGoogle Scholar
  40. 40.
    B. Gökce, D.D. van ’t Zand, A. Menendez-Manjon, S. Barcikowski, Chem. Phys. Lett. 626, 96 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    S. Jendrzej, B. Gökce, V. Amendola, S. Barcikowski, J. Coll. Interf. Sci. 463, 299 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    P. D’Angelo, A. Zitolo, F. Ceccacci, R. Caminiti, G. Aquilanti, J. Chem. Phys. 135, 154509 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    A. Moezzi, M. Cortie, A. McDonagh, Dalton Trans. 40, 4871 (2011)CrossRefGoogle Scholar
  44. 44.
    P. Kowalik, M. Konkol, K. Antoniak-Jurak, W. Próchniak, P. Wierciocha, M. Rawski, T. Borowiecki, Mat. Res. Bull. 65, 149 (2015)CrossRefGoogle Scholar
  45. 45.
    C.L.B.C.W.B.B.G. Marzun, H. Bönnemann, Chem. Phys. Chem. 18, 1175 (2017)CrossRefGoogle Scholar
  46. 46.
    R.B. Reed, D. Ladner, C.P. Higgins, P. Westerhoff, J. Ranville, Environ. Toxicol. Chem. 31, 93 (2012)CrossRefGoogle Scholar
  47. 47.
    A. Letzel, B. Gökce, P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, S. Barcikowski, J. Phys. Chem. C 121, 5356 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute for Photon Science and Synchrotron Radiation, KIT KarlsruheKarlsruheGermany
  2. 2.Technical Chemistry I and Center of Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenEssenGermany
  3. 3.Laboratory for Application of Synchrotron Radiation, KIT KarlsruheKarlsruheGermany

Personalised recommendations