Applied Physics A

, 123:484 | Cite as

Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

  • Louisa M. Smieska
  • Ruth Mullett
  • Laurent Ferri
  • Arthur R. Woll
Article
Part of the following topical collections:
  1. SR2A 2016

Abstract

We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

References

  1. 1.
    J. Barnett, S. Miller, E. Pearce, Opt. Laser Technol. 38(4–6), 445 (2006). doi:10.1016/j.optlastec.2005.06.005 ADSCrossRefGoogle Scholar
  2. 2.
    L. Burgio, R.J.H. Clark, R.R. Hark, Proc. Natl. Acad. Sci. 107(13), 5726 (2010). doi:10.1073/pnas.0914797107 ADSCrossRefGoogle Scholar
  3. 3.
    J.K. Delaney, P. Ricciardi, L.D. Glinsman, M. Facini, M. Thoury, M. Palmer, E.R. De La Rie, Stud. Conserv. 59(2), 91 (2014). doi:10.1179/2047058412Y.0000000078 CrossRefGoogle Scholar
  4. 4.
    A. Re, A.L. Giudice, D. Angelici, S. Calusi, L. Giuntini, M. Massi, G. Pratesi, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269(20), 2373 (2011). doi:10.1016/j.nimb.2011.02.070 ADSCrossRefGoogle Scholar
  5. 5.
    D. Angelici, A. Borghi, F. Chiarelli, R. Cossio, G. Gariani, A. Lo Giudice, A. Re, G. Pratesi, G. Vaggelli, Microsc. Microanal. 21(02), 526 (2015). doi:10.1017/S143192761500015X ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Gambardella, C.M. Schmidt Patterson, S.M. Webb, M.S. Walton, Microchem. J. 125, 299 (2016). doi:10.1016/j.microc.2015.11.030 CrossRefGoogle Scholar
  7. 7.
    M. Aru, L. Burgio, M.S. Rumsey, J. Raman Spectrosc. 45(11–12), 1013 (2014). doi:10.1002/jrs.4469 ADSCrossRefGoogle Scholar
  8. 8.
    N. Salvadó, S. Butí, M.A.G. Aranda, T. Pradell, Anal. Methods 6(11), 3610 (2014). doi:10.1039/C4AY00424H CrossRefGoogle Scholar
  9. 9.
    S. Svarcova, D. Hradil, J. Hradilova, E. Koci, P. Bezdicka, Anal. Bioanal. Chem. 395(7), 2037 (2009). doi:10.1007/s00216-009-3144-7 CrossRefGoogle Scholar
  10. 10.
    S. Svarcova, E. Koci, P. Bezdicka, D. Hradil, J. Hradilova, Anal. Bioanal. Chem. 398(2), 1061 (2010). doi:10.1007/s00216-010-3980-5 CrossRefGoogle Scholar
  11. 11.
    S. Svarcová, Z. Cermáková, J. Hradilová, P. Bezdicka, D. Hradil, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 132, 514 (2014). doi:10.1016/j.saa.2014.05.022 ADSCrossRefGoogle Scholar
  12. 12.
    B.H. Berrie, M. Leona, R. McLaughlin, Herit. Sci. 4(1), 1 (2016). doi:10.1186/s40494-016-0070-9 CrossRefGoogle Scholar
  13. 13.
    K. Trentelman, M. Bouchard, M. Ganio, C. Namowicz, C.S. Patterson, M. Walton, X-Ray Spectrom. 39(3), 159 (2010). doi:10.1002/xrs.1242 CrossRefGoogle Scholar
  14. 14.
    G. Fortunato, A. Ritter, D. Fabian, Analyst 130(6), 898 (2005). doi:10.1039/B418105K ADSCrossRefGoogle Scholar
  15. 15.
    J.E. Spangenberg, J.V. Lavric, N. Meisser, V. Serneels, Rapid Commun. Mass Spectrom. 24(19), 2812 (2010). doi:10.1002/rcm.4705 CrossRefGoogle Scholar
  16. 16.
    L. Chiarantini, F. Gallo, V. Rimondi, M. Benvenuti, P. Costagliola, A. Dini, Archaeometry 57(5), 879 (2015). doi:10.1111/arcm.12146 CrossRefGoogle Scholar
  17. 17.
    A. Duran, J.L. Perez-Rodriguez, T. Espejo, M.L. Franquelo, J. Castaing, P. Walter, Anal. Bioanal. Chem. 395(7), 1997 (2009). doi:10.1007/s00216-009-2992-5 CrossRefGoogle Scholar
  18. 18.
    A. Duran, A. López-Montes, J. Castaing, T. Espejo, J. Archaeol. Sci. 45, 52 (2014). doi:10.1016/j.jas.2014.02.011
  19. 19.
    P. Targowski, M. Pronobis-Gajdzis, A. Surmak, M. Iwanicka, E.A. Kaszewska, M. Sylwestrzak, Stud. Conserv. 60(S1), S167 (2015). doi:10.1179/0039363015Z.000000000221 CrossRefGoogle Scholar
  20. 20.
    P. Ricciardi, S. Legrand, G. Bertolotti, K. Janssens, Microchem. J. 124, 785 (2015). doi:10.1016/j.microc.2015.10.020 CrossRefGoogle Scholar
  21. 21.
    W. De Nolf, B. Vekemans, K. Janssens, G. Falkenberg, Pigment identification by scanning \({\mu }\)-xrf/\({\mu }\)-xrd. Tech. rep., Beamline L, HASYLAB at DESY, Hamburg (2006)Google Scholar
  22. 22.
    S. Legrand, F. Vanmeert, G. Van der Snickt, M. Alfeld, W. De Nolf, J. Dik, K. Janssens, Herit. Sci. 2(1), 13 (2014). doi:10.1186/2050-7445-2-13 CrossRefGoogle Scholar
  23. 23.
    E. Dooryhée, M. Anne, I. Bardiès, J.L. Hodeau, P. Martinetto, S. Rondot, J. Salomon, G. Vaughan, P. Walter, Appl. Phys. A 81(4), 663 (2005). doi:10.1007/s00339-005-3281-6 ADSCrossRefGoogle Scholar
  24. 24.
    W. De Nolf, J. Dik, G. Van der Snickt, A. Wallert, K. Janssens, J. Anal. At. Spectrom. 26(5), 910 (2011). doi:10.1039/c0ja00255k CrossRefGoogle Scholar
  25. 25.
    K. Trentelman, C.S. Patterson, N. Turner, in Handheld XRF for art and archaeology, ed. by A.N. Shugar, J.L. Mass, no. 3 in Studies in archaeological sciences (Leuven, Leuven University Press, 2012), chap. 5, pp. 159–190Google Scholar
  26. 26.
    V. Solé, E. Papillon, M. Cotte, P. Walter, J. Susini, Spectrochim. Acta Part B At. Spectrosc. 62(1), 63 (2007). doi:10.1016/j.sab.2006.12.002 ADSCrossRefGoogle Scholar
  27. 27.
    R. Kirkham, P.A. Dunn, A.J. Kuczewski, D.P. Siddons, R. Dodanwela, G.F. Moorhead, C.G. Ryan, G. De Geronimo, R. Beuttenmuller, D. Pinelli, M. Pfeffer, P. Davey, M. Jensen, D.J. Paterson, M.D. de Jonge, D.L. Howard, M. Küsel, J. McKinlay, AIP Conf. Proc. 1234, 240 (2010). doi:10.1063/1.3463181 ADSCrossRefGoogle Scholar
  28. 28.
    C. Ryan, R. Kirkham, R. Hough, G. Moorhead, D. Siddons, M. de Jonge, D. Paterson, G. De Geronimo, D. Howard, J. Cleverley, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 619(1–3), 37 (2010). doi:10.1016/j.nima.2009.11.035
  29. 29.
    U. Bergmann, X-ray fluorescence imaging of the archimedes palimpsest: A technical summary. Tech. rep, SLAC National Accelerator Laboratory (2005)Google Scholar
  30. 30.
    X-ray interactions with matter (2012). http://henke.lbl.gov/optical_constants/
  31. 31.
    C. Ryan, D. Jamieson, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 77(1–4), 203 (1993). doi:10.1016/0168-583X(93)95545-G ADSCrossRefGoogle Scholar
  32. 32.
    M. Alfeld, K. Janssens, J. Anal. At. Spectrom. 30(3), 777 (2015). doi:10.1039/C4JA00387J CrossRefGoogle Scholar
  33. 33.
    W. De Nolf, F. Vanmeert, K. Janssens, J. Appl. Crystallogr. 47(3), 1107 (2014). doi:10.1107/S1600576714008218 CrossRefGoogle Scholar
  34. 34.
    R.T. Downs, M. Hall-Wallace, Am. Mineral. 88, 247 (2003)CrossRefGoogle Scholar
  35. 35.
    D.V. Thompson, The Materials and Techniques of Medieval Painting (Dover Publications, New York, 1956)Google Scholar
  36. 36.
    L. Pittwell, Chem. Geol. 12(1), 39 (1973). doi:10.1016/0009-2541(73)90026-0 ADSCrossRefGoogle Scholar
  37. 37.
    C. Cennini, Cennino Cennini’s Il libro dell’arte: a new English translation and commentary with Italian transcription (Archetype Publications Ltd, London, 2015). Translation and commentary by Lara BroeckeGoogle Scholar
  38. 38.
    M. Price, Leonardo 33(4), 281 (2000). doi:10.1162/002409400552667 CrossRefGoogle Scholar
  39. 39.
    N.K. Turner, D. Oltrogge, Colour: the art & science of illuminated manuscripts (Harvey Miller Publishers, London, 2016), chap. Pigment recipes and model books: mechanisms for knowledge transmission and the training of manuscript illuminators. ISBN 978-1-909400-57-3Google Scholar
  40. 40.
    A.J. Horowitz, K.A. Elrick, Appl. Geochem. 2(4), 437 (1987). doi:10.1016/0883-2927(87)90027-8 CrossRefGoogle Scholar
  41. 41.
    I. Guagliardi, C. Apollaro, F. Scarciglia, R.D. Rosa, Biotechnol. Agron. Soc. Environ. 17(1), 43 (2013)Google Scholar
  42. 42.
    S. Klein, C. Domergue, Y. Lahaye, G.P. Brey, H.M. von Kaenel, J. Iber. Geol. 35(1), 59 (2009)Google Scholar
  43. 43.
    S. Staude, W. Werner, T. Mordhorst, K. Wemmer, D.E. Jacob, G. Markl, Miner. Deposita 47(3), 251 (2012). doi:10.1007/s00126-011-0365-4 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Louisa M. Smieska
    • 1
  • Ruth Mullett
    • 2
  • Laurent Ferri
    • 3
  • Arthur R. Woll
    • 1
  1. 1.Wilson LaboratoryCornell High Energy Synchrotron SourceIthacaUSA
  2. 2.Medieval Studies ProgramCornell UniversityIthacaUSA
  3. 3.Cornell Library Rare and Manuscript CollectionsCornell UniversityIthacaUSA

Personalised recommendations