Skip to main content
Log in

Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rendle DF (2003) Rigaku J 19–20:11–22

    Google Scholar 

  2. Schreiner M, Melcher M, Uhlir K (2007) Anal Bioanal Chem 387:737–747

    Article  CAS  Google Scholar 

  3. Cardell C, Guerra I, Romero-Pastor J, Cultrone G, Rodriguez-Navarro A (2009) Anal Chem 81:604–611

    Article  CAS  Google Scholar 

  4. Hradil D, Hradilová J, Bezdička P, Švarcová S (2008) X-ray Spectrom 37:376–382

    Article  CAS  Google Scholar 

  5. Fitzpatrick RW, Raven MD, Forrester ST (2009) In: Ritz K (ed) Criminal and environmental soil forensics. Springer, Netherlands

    Google Scholar 

  6. Šímová V, Bezdička P, Hradilová J, Hradil D, Grygar T (2005) Powder Diffr 20(3):224–229

    Article  Google Scholar 

  7. Kotrlý M (2007) Z Kristallogr 222:193–198

    Article  Google Scholar 

  8. Vandenabeele P, Edwards HGM, Moens L (2007) Chem Rev 107:675–686

    Article  CAS  Google Scholar 

  9. Bacci M, Fabbri M, Picollo M, Porcinai S (2001) Anal Chim Acta 446:15–21

    Article  CAS  Google Scholar 

  10. Rosi F, Daveri A, Miliani C, Verri G, Benedetti P, Piqué F, Brunetti BG, Sgamellotti A (2009) Anal Bioanal Chem 395:2097–2106

    Article  CAS  Google Scholar 

  11. Goehner RP, Eatough MO, Michael JR, Tissot RG (2000) In: Chung FH (ed) Industrial applications of X-Ray diffraction. Marcel Dekker, Inc, New York

    Google Scholar 

  12. Hoffman SA, Thiel DJ, Bilderback DH (1994) Nucl Instrum Meth Phys Res A 347:384–389

    Article  Google Scholar 

  13. Kempson IM, Kirkbride KP, Skinner WM, Coumbaros J (2005) Talanta 67:286–303

    Article  CAS  Google Scholar 

  14. Dooryhée E, Anne M, Bardiès I, Hodeau JL, Martinetto P, Rondot S, Salomon J, Vaughan GBM, Walter P (2005) Appl Phys A 81:663–667

    Article  Google Scholar 

  15. Salvadó N, Pradell T, Pantos E, Papiz MZ, Molera J, Seco M, Vendrell-Saz M (2002) J Synchrotron Rad 9:215–222

    Article  Google Scholar 

  16. JCPDS PDF-2 database (2004) International centre for diffraction data, Newtown Square, PA, USA. release 54

  17. ICSD database (2008) FIZ Karlsruhe, Germany, release 2008/2

  18. Cambridge structure database (2010) The cambridge crystallographic data centre, Cambridge, UK. http://www.ccdc.cam.ac.uk. Accessed 5 May 2010

  19. Keaney A, Ruffell A, McKinley J (2009) In: Ritz K (ed) Criminal and environmental soil forensics. Springer, Netherlands

    Google Scholar 

  20. Švarcová S, Hradil D, Hradilová J, Kočí E, Bezdička P (2009) Anal Bioanal Chem 395:2037–2050

    Article  Google Scholar 

  21. Hradil D, Grygar T, Hradilová J, Bezdička P, Grünwaldová V, Fogaš I, Miliani C (2007) J Cult Herit 8:377–386

    Article  Google Scholar 

  22. Rietveld HM (1969) J Appl Cryst 2:65–71

    Article  CAS  Google Scholar 

  23. Rodríguez-Carvajal J (2001) An introduction to the program fullprof 2000, user manual

  24. Brindley GW (1945) Phil Mag 36:347–369

    CAS  Google Scholar 

  25. Rendle DF (2000) In: Chung FH (ed) Industrial applications of X-Ray diffraction. Marcel Dekker, Inc, New York

    Google Scholar 

  26. Bezdička P, Kotulanová E (2007) Mater Struct 14:150–151

    Google Scholar 

  27. McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1999) J Appl Cryst 32:36–50

    Article  CAS  Google Scholar 

  28. Grygar T, Hradilová J, Hradil D, Bezdička P, Bakardjieva S (2003) Anal Bioanal Chem 375:1154–1160

    CAS  Google Scholar 

  29. Buhrke VE, Jenkins R, Smith DK (1998) Preparation of specimens for X-ray fluorescence and X-ray diffraction analysis. Wiley–VCH, New York

    Google Scholar 

  30. Elton NJ, Salt PD (1996) Powder Diffr 11:218–229

    CAS  Google Scholar 

  31. Elton NJ, Smith DK (2000) In: Chung FH (ed) Industrial applications of X-Ray diffraction. Marcel Dekker, Inc, New York

    Google Scholar 

  32. Srodon J, Drits VA, McCarty DK, Hsieh JCC, Eberl DD (2001) Clays Clay Miner 49:514–528

    Article  CAS  Google Scholar 

  33. Welcomme E, Walter P, Bleuet P, Hodeau JL, Dooryhee E, Martinetto P, Menu M (2007) Appl Phys A 89:825–832

    Article  CAS  Google Scholar 

  34. Eastaugh E, Walsh V, Chaplin T, Siddal R (2004) The pigment compendium–a dictionary of historical pigments. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

The authors thank Renáta Novotná Zemanová and Irma Pakutinskiene for providing artwork samples and for versatile cooperation, and Marek Kotrlý from the Institute of Criminalistics in Prague for providing model forensic samples and for consultation. This work was supported by the Academy of Sciences of the Czech Republic (AV0Z40320502 and M200320901) and by the Ministry of Education, Youth, and Sport (MSM 6046144603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvie Švarcová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Švarcová, S., Kočí, E., Bezdička, P. et al. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science. Anal Bioanal Chem 398, 1061–1076 (2010). https://doi.org/10.1007/s00216-010-3980-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3980-5

Keywords

Navigation