Coral Reefs

, Volume 35, Issue 1, pp 293–302 | Cite as

Three decades of recurrent declines and recoveries in corals belie ongoing change in fish assemblages

  • T. LamyEmail author
  • R. Galzin
  • M. Kulbicki
  • T. Lison de Loma
  • J. Claudet


Coral reefs are increasingly being altered by a myriad of anthropogenic activities and natural disturbances. Long-term studies offer unique opportunities to understand how multiple and recurrent disturbances can influence coral reef resilience and long-term dynamics. While the long-term dynamics of coral assemblages have been extensively documented, the long-term dynamics of coral reef fish assemblages have received less attention. Here, we describe the changes in fish assemblages on Tiahura reef, Moorea, from 1979 to 2011. During this 33-yr period, Tiahura was exposed to multiple disturbances (crown-of-thorns seastar outbreaks and cyclones) that caused recurrent declines and recoveries of coral cover and changes in the dominant coral genera. These shifts in coral composition were associated with long-term cascading effects on fish assemblages. The composition and trophic structure of fish assemblages continuously shifted without returning to their initial composition, whereas fish species richness remained stable, albeit with a small increase over time. We detected nonlinear responses of fish density when corals were most degraded. When coral cover dropped below 10 % following a severe crown-of-thorns sea star outbreak, the density of most fish trophic groups sharply decreased. Our study shows that historical contingency may potentially be an important but largely underestimated factor explaining the contemporary structure of reef fish assemblages and suggests that temporal stability in their structure and function should not necessarily be the target of management strategies that aim at increasing or maintaining coral reef resilience.


Resilience Threshold Tipping point Coral fish assemblages Historical contingency Shifting baseline 



Craig W. Osenberg, Charlotte Moritz, and Suzanne C. Mills provided useful comments on an earlier version of this manuscript. We also thank the topic editor for providing constructive comments. T. Lamy was supported by a postdoctoral fellowship from Laboratoire d’Excellence CORAIL (EPHE). This study was financially supported by INTHENSE (Fondation de France), LIVE AND LET DIE (ANR-11-JSV7-012-01), and ACRoSS (ANR-14-CE03-0001-01).

Supplementary material

338_2015_1371_MOESM1_ESM.docx (33 kb)
Supplementary material 1 (DOCX 33 kb)
338_2015_1371_MOESM2_ESM.docx (1013 kb)
Supplementary material 2 (DOCX 1013 kb)


  1. Adjeroud M, Augustin D, Galzin R, Salvat B (2002) Natural disturbances and interannual variability of coral reef communities on the outer slope of Tiahura (Moorea, French Polynesia): 1991 to 1997. Mar Ecol Prog Ser 237:121–131CrossRefGoogle Scholar
  2. Adjeroud M, Chancerelle Y, Schrimm M, Perez T, Lecchini D, Galzin R, Salvat B (2005) Detecting the effects of natural disturbances on coral assemblages in French Polynesia: a decade survey at multiple scales. Aquat Living Resour 18:111–123CrossRefGoogle Scholar
  3. Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, Loma TL, Penin L, Thibaut L, Vidal-Dupiol J, Salvat B, Galzin R (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28:775–780CrossRefGoogle Scholar
  4. Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc B Biol Sci 276:3019–3025CrossRefGoogle Scholar
  5. Ateweberhan M, McClanahan TR, Graham NAJ, Sheppard CRC (2011) Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30:739–752CrossRefGoogle Scholar
  6. Baird AH, Pratchett MS, Hoey AS, Herdiana Y, Campbell SJ (2013) Acanthaster planci is a major cause of coral mortality in Indonesia. Coral Reefs 32:803–812CrossRefGoogle Scholar
  7. Ban SS, Graham NAJ, Connolly SR (2014) Evidence for multiple stressor interactions and effects on coral reefs. Glob Chang Biol 20:681–697CrossRefPubMedGoogle Scholar
  8. Beldade R, Mills SC, Claudet J, Côté I (2015) More coral, more fish? Contrasting snapshots from a remote Pacific atoll. PeerJ 3:e745PubMedCentralCrossRefPubMedGoogle Scholar
  9. Bell JD, Galzin R (1984) Influence of live coral cover on coral-reef fish communities. Mar Ecol Prog Ser 15:265–274CrossRefGoogle Scholar
  10. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833CrossRefPubMedGoogle Scholar
  11. Bellwood D, Hoey AS, Ackerman JL, Depczynski M (2006) Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob Chang Biol 12:1587–1594CrossRefGoogle Scholar
  12. Bellwood D, Baird A, Depczynski M, González-Cabello A, Hoey A, Lefèvre C, Tanner J (2012) Coral recovery may not herald the return of fishes on damaged coral reefs. Oecologia 170:567–573CrossRefPubMedGoogle Scholar
  13. Berumen ML, Pratchett MS (2006) Recovery without resilience: persistent disturbance and long-term shifts in the structure of fish and coral communities at Tiahura Reef, Moorea. Coral Reefs 25:647–653CrossRefGoogle Scholar
  14. Bouchon C (1985) Quantitative study of scleractinian coral communities of Tiahura Reef, Moorea Island, French Polynesia. Proc 5th Int Coral Reef Symp 6:279–284Google Scholar
  15. Bozec YM, Doledec S, Kulbicki M (2005) An analysis of fish-habitat associations on disturbed coral reefs: chaetodontid fishes in New Caledonia. J Fish Biol 66:966–982CrossRefGoogle Scholar
  16. Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2:e711PubMedCentralCrossRefPubMedGoogle Scholar
  17. Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New-York 488 ppGoogle Scholar
  18. Cheal AJ, Wilson SK, Emslie MJ, Dolman AM, Sweatman H (2008) Responses of reef fish communities to coral declines on the Great Barrier Reef. Mar Ecol Prog Ser 372:211–223CrossRefGoogle Scholar
  19. Chin A, Lison de Loma T, Reytar K, Planes S, Gerhardt K, Clua E, Burke L, Wilkinson C (2011) Status of coral reefs of the Pacific and outlook: 2011. Global Coral Reef Monitoring Network. 260 ppGoogle Scholar
  20. Christensen NL, Bartuska AM, Brown JH, Carpenter S, D’Antonio C, Francis R, Franklin JF, MacMahon JA, Noss RF, Parsons DJ, Peterson CH, Turner MG, Woodmansee RG (1996) The report of the Ecological Society of America committee on the scientific basis for ecosystem management. Ecol Appl 6:665–691CrossRefGoogle Scholar
  21. Coles SL, Brown EK (2007) Twenty-five years of change in coral coverage on a hurricane impacted reef in Hawai’i: the importance of recruitment. Coral Reefs 26:705–717CrossRefGoogle Scholar
  22. D’agata S, Mouillot D, Kulbicki M, Andréfouët S, Bellwood DR, Cinner JE, Cowman PF, Kronen M, Pinca S, Vigliola L (2014) Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr Biol 24:555–560CrossRefPubMedGoogle Scholar
  23. Darling ES, McClanahan TR, Côté IM (2010) Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conserv Lett 3:122–130CrossRefGoogle Scholar
  24. Dayton PK, Tegner MJ, Edwards PB, Riser KL (1998) Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecol Appl 8:309–322CrossRefGoogle Scholar
  25. De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119CrossRefPubMedGoogle Scholar
  26. De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A 109:17995–17999PubMedCentralCrossRefPubMedGoogle Scholar
  27. Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F, Sievers C, Magurran AE (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–299CrossRefPubMedGoogle Scholar
  28. Dufour V, Riclet E, Lo-Yat A (1996) Colonization of reef fishes at Moorea Island, French Polynesia: temporal and spatial variation of the larval flux. Mar Freshw Res 47:413–422CrossRefGoogle Scholar
  29. Dulvy NK, Freckleton RP, Polunin NVC (2004) Coral reef cascades and the indirect effects of predator removal by exploitation. Ecol Lett 7:410–416CrossRefGoogle Scholar
  30. Emslie MJ, Pratchett MS, Cheal AJ (2011) Effects of different disturbance types on butterflyfish communities of Australia’s Great Barrier Reef. Coral Reefs 30:461–471CrossRefGoogle Scholar
  31. Emslie M, Cheal A, Sweatman H, Delean J (2008) Recovery from disturbance of coral and reef fish communities on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 371:177–190CrossRefGoogle Scholar
  32. Fabricius KE, Okaji K, De’ath G (2010) Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29:593–605CrossRefGoogle Scholar
  33. Friedlander AM, Parrish JD (1998) Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J Exp Mar Biol Ecol 224:1–30CrossRefGoogle Scholar
  34. Galzin R, Legendre P (1987) The fish communities of a coral reef transect. Pac Sci 41:158–165Google Scholar
  35. Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in caribbean corals. Science 301:958–960CrossRefPubMedGoogle Scholar
  36. Garpe KC, Yahya SAS, Lindahl U, Öhman MC (2006) Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Mar Ecol Prog Ser 315:237–247CrossRefGoogle Scholar
  37. Graham NAJ, Chong-Seng KM, Huchery C, Januchowski-Hartley FA, Nash KL (2014) Coral reef community composition in the context of disturbance history on the Great Barrier Reef. Australia. PLoS One 9:e101204CrossRefPubMedGoogle Scholar
  38. Graham NAJ, Jennings S, MacNeil MA, Mouillot D, Wilson SK (2015) Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–97CrossRefPubMedGoogle Scholar
  39. Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Bijoux JP, Robinson J (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Natl Acad Sci U S A 103:8425–8429PubMedCentralCrossRefPubMedGoogle Scholar
  40. Halford AR, Caley J (2009) Towards an understanding of resilience in isolated coral reefs. Glob Chang Biol 15:3031–3045CrossRefGoogle Scholar
  41. Halford A, Cheal AJ, Ryan D, Williams DM (2004) Resilience to large-scale disturbance in coral and fish assemblages on the Great Barrier Reef. Ecology 85:1892–1905CrossRefGoogle Scholar
  42. Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241CrossRefPubMedGoogle Scholar
  43. Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7CrossRefGoogle Scholar
  44. Hughes TP (1989) Community structure and diversity of coral reefs: the role of history. Ecology 70:275–279CrossRefGoogle Scholar
  45. Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551CrossRefPubMedGoogle Scholar
  46. Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642CrossRefPubMedGoogle Scholar
  47. Hughes TP, Linares C, Dakos V, van de Leemput IA, van Nes EH (2013) Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol Evol 28:149–155CrossRefPubMedGoogle Scholar
  48. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637CrossRefPubMedGoogle Scholar
  49. Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline threatens fish biodiversity in marine reserves. Proc Natl Acad Sci U S A 101:8251–8253PubMedCentralCrossRefPubMedGoogle Scholar
  50. Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple A, Murray W (2008) Weather and climate extremes in a changing climate, regions of focus: North America, Hawaii, Caribbean, and US Pacific Islands. Report by the US Climate Change Science ProgramGoogle Scholar
  51. Kayal M, Vercelloni J, de Loma T, Bosserelle P, Chancerelle Y, Geoffroy S, Stievenart C, Michonneau F, Penin L, Planes S, Adjeroud M (2012) Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS One 7:e47363PubMedCentralCrossRefPubMedGoogle Scholar
  52. Knowlton N, Jackson JBC (2008) Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol 6:e54PubMedCentralCrossRefPubMedGoogle Scholar
  53. Komyakova V, Munday PL, Jones GP (2013) Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS One 8:e83178PubMedCentralCrossRefPubMedGoogle Scholar
  54. Kulbicki M, Bozec Y-M, Labrosse P, Letourneur Y, Mou-Tham Wantiez GL (2005) Diet composition of carnivorous fishes from coral reef lagoons of New Caledonia. Aquat Living Resour 18:231–250CrossRefGoogle Scholar
  55. Kuo C-Y, Yuen YS, Meng P-J, Ho P-H, Wang J-T, Liu P-J, Chang Y-C, Dai C-F, Fan T-Y, Lin H-J, Baird AH, Chen CA (2012) Recurrent disturbances and the degradation of hard coral communities in Taiwan. PLoS One 7:e44364PubMedCentralCrossRefPubMedGoogle Scholar
  56. Lane DJW (2012) Acanthaster planci impact on coral communities at permanent transect sites on Bruneian reefs, with a regional overview and a critique on outbreak causes. J Mar Biol Assoc U.K. 92:803–809CrossRefGoogle Scholar
  57. Leray M, Meyer CP, Mills SC (2015) Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet. PeerJ 3:e1047PubMedCentralCrossRefPubMedGoogle Scholar
  58. Leray M, Beraud M, Anker A, Chancerelle Y, Mills SC (2012) Acanthaster planci outbreak: decline in coral health, coral size structure modification and consequences for obligate decapod assemblages. PLoS One 7:e35456PubMedCentralCrossRefPubMedGoogle Scholar
  59. McClanahan TR, Muthiga NA (1998) An ecological shift in a remote coral atoll of Belize over 25 years. Environ Conserv 25:122–130CrossRefGoogle Scholar
  60. McClanahan TR, Graham NAJ (2005) Recovery trajectories of coral reef fish assemblages within Kenyan marine protected areas. Mar Ecol Prog Ser 294:241–248CrossRefGoogle Scholar
  61. McClanahan TR, Graham NAJ, MacNeil MA, Muthiga NA, Cinner JE, Bruggemann JH, Wilson SK (2011) Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc Natl Acad Sci U S A 108:17230–17233PubMedCentralCrossRefPubMedGoogle Scholar
  62. Mora C (2008) A clear human footprint in the coral reefs of the Caribbean. Proc R Soc B Biol Sci 275:767–773CrossRefGoogle Scholar
  63. Mora C, Aburto-Oropeza O, Ayala Bocos A, Ayotte PM, Banks S, Bauman AG, Beger M, Bessudo S, Booth DJ, Brokovich E, Brooks A, Chabanet P, Cinner JE, Cortés J, Cruz-Motta JJ, Cupul Magaña A, DeMartini EE, Edgar GJ, Feary DA, Ferse SCA, Friedlander AM, Gaston KJ, Gough C, Graham NAJ, Green A, Guzman H, Hardt M, Kulbicki M, Letourneur Y, López Pérez A, Loreau M, Loya Y, Martinez C, Mascareñas-Osorio I, Morove T, Nadon M-O, Nakamura Y, Paredes G, Polunin NVC, Pratchett MS, Reyes Bonilla H, Rivera F, Sala E, Sandin SA, Soler G, Stuart-Smith R, Tessier E, Tittensor DP, Tupper M, Usseglio P, Vigliola L, Wantiez L, Williams I, Wilson SK, Zapata FA (2011) Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol 9:e1000606PubMedCentralCrossRefPubMedGoogle Scholar
  64. Mouillot D, Villéger S, Parravicini V, Kulbicki M, Arias-Gonzàlez E, Bender MG, Chabanet P, Floeter S, Friedlander A, Vigliola L, Bellwood DR (2014) Functional over-redundancy and high functional vulnerability in global fish faunas of tropical reefs. Proc Natl Acad Sci U S A 111:13757–13762PubMedCentralCrossRefPubMedGoogle Scholar
  65. Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N, Paine CET, Renaud J, Thuiller W (2013) Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol 11:e1001569PubMedCentralCrossRefPubMedGoogle Scholar
  66. Norris RD, Turner SK, Hull PM, Ridgwell A (2013) Marine ecosystem responses to cenozoic global change. Science. 341:492–498CrossRefPubMedGoogle Scholar
  67. Osborne K, Dolman AM, Burgess SC, Johns KA (2011) Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995–2009). PLoS One 6:e17516PubMedCentralCrossRefPubMedGoogle Scholar
  68. Ostrander GK, Armstrong KM, Knobbe ET, Gerace D, Scully EP (2000) Rapid transition in the structure of a coral reef community: the effects of coral bleaching and physical disturbance. Proc Natl Acad Sci U S A 97:5297–5302PubMedCentralCrossRefPubMedGoogle Scholar
  69. Paddack MJ, Reynolds JD, Aguilar C, Appeldoorn RS, Beets J, Burkett EW, Chittaro PM, Clarke K, Esteves R, Fonseca AC, Forrester GE, Friedlander AM, García-Sais J, González-Sansón G, Jordan LKB, McClellan DB, Miller MW, Molloy PP, Mumby PJ, Nagelkerken I, Nemeth M, Navas-Camacho R, Pitt J, Polunin NVC, Reyes-Nivia MC, Robertson DR, Rodríguez-Ramírez A, Salas E, Smith SR, Spieler RE, Steele MA, Williams ID, Wormald CL, Watkinson AR, Côté IM (2009) Recent region-wide declines in Caribbean reef fish abundance. Curr Biol 19:590–595CrossRefPubMedGoogle Scholar
  70. Pandolfi JM, Jackson JBC, Baron N, Bradbury RH, Guzman HM, Hughes TP, Kappel CV, Micheli F, Ogden JC, Possingham HP, Sala E (2005) Are US coral reefs on the slippery slope to slime? Science 307:1725–1726CrossRefPubMedGoogle Scholar
  71. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958CrossRefPubMedGoogle Scholar
  72. Penin L, Vidal-Dupiol J, Adjeroud M (2013) Response of coral assemblages to thermal stress: are bleaching intensity and spatial patterns consistent between events? Environ Monit Assess 185:5031–5042CrossRefPubMedGoogle Scholar
  73. Planes S, Levefre A, Legendre P, Galzin R (1993) Spatio-temporal variability in fish recruitment to a coral reef (Moorea, French Polynesia). Coral Reefs 12:105–113CrossRefGoogle Scholar
  74. Pratchett MS, Hoey AS, Wilson SK (2014) Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Curr Opin Environ Sustain 7:37–43CrossRefGoogle Scholar
  75. Pratchett MS, Trapon M, Berumen ML, Chong-Seng K (2011) Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia. Coral Reefs 30:183–193CrossRefGoogle Scholar
  76. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  77. Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N, Sala E (2008) Baselines and degradation of coral reefs in the Northern Line Islands. PLoS One 3:e1548PubMedCentralCrossRefPubMedGoogle Scholar
  78. Speed CW, Babcock RC, Bancroft KP, Beckley LE, Bellchambers LM, Depczynski M, Field SN, Friedman KJ, Gilmour JP, Hobbs J-PA, Kobryn HT, Moore JAY, Nutt CD, Shedrawi G, Thomson DP, Wilson SK (2013) Dynamic stability of coral reefs on the West Australian coast. PLoS One 8:e69863PubMedCentralCrossRefPubMedGoogle Scholar
  79. Tolimieri N, Sale PF, Nemeth RS, Gestring KB (1998) Replenishment of populations of Caribbean reef fishes: are spatial patterns of recruitment consistent through time? J Exp Mar Biol Ecol 230:55–71CrossRefGoogle Scholar
  80. Trapon ML, Pratchett MS, Penin L (2011) Comparative effects of different disturbances in coral reef habitats in Moorea. J Mar Biol, French Polynesia. doi: 10.1155/2011/807625 Google Scholar
  81. Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91:2833–2849CrossRefPubMedGoogle Scholar
  82. van Hooidonk R, Maynard JA, Planes S (2013) Temporary refugia for coral reefs in a warming world. Nat Clim Chang 3:508–511CrossRefGoogle Scholar
  83. Vellend M, Baeten L, Myers-Smith IH, Elmendorf SC, Beauséjour R, Brown CD, De Frenne P, Verheyen K, Wipf S (2013) Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc Natl Acad Sci U S A 110:19456–19459PubMedCentralCrossRefPubMedGoogle Scholar
  84. Wilson SK, Graham NAJ, Polunin NVC (2007) Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar Biol 151:1069–1076CrossRefGoogle Scholar
  85. Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Chang Biol 12:2220–2234CrossRefGoogle Scholar
  86. Wilson SK, Dolman AM, Cheal AJ, Emslie MJ, Pratchett MS, Sweatman HPA (2009) Maintenance of fish diversity on disturbed coral reefs. Coral Reefs 28:3–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • T. Lamy
    • 1
    • 2
    • 3
    Email author
  • R. Galzin
    • 1
    • 2
  • M. Kulbicki
    • 2
    • 4
  • T. Lison de Loma
    • 1
    • 2
  • J. Claudet
    • 1
    • 2
  1. 1.National Center for Scientific Research, CRIOBEUSR 3278 CNRS-EPHE-UPVDPerpignanFrance
  2. 2.Laboratoire d’Excellence CORAILPerpignanFrance
  3. 3.Département de sciences biologiquesUniversité de MontréalMontrealCanada
  4. 4.UMR Entropie, Institut de Recherche pour le Développement (IRD)Université de PerpignanPerpignanFrance

Personalised recommendations