Skip to main content
Log in

Breast compression parameters and mammographic density in the Norwegian Breast Cancer Screening Programme

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate possible associations between breast compression parameters, including compression force, pressure and compressed breast thickness, and mammographic density assessed by an automated software.

Methods

We obtained data on breast compression parameters, breast volume, absolute and percentage dense volume, and body mass index for 14,698 women screened with two-view (craniocaudal, CC, and mediolateral oblique, MLO) digital mammography, in the Norwegian Breast Cancer Screening Programme, 2014–2015. The Spearman correlation coefficient (ρ) was used to measure correlation between breast compression parameters, breast volume and absolute and percentage dense volume. Linear regression was used to examine associations between breast compression parameters and absolute and percentage dense volume, adjusting for breast volume, age and BMI.

Results

A fair negative correlation was observed between compression pressure and absolute dense volume (ρ = − 0.37 for CC and ρ = − 0.34 for MLO). A moderate negative correlation was identified for compressed breast thickness and percentage dense volume (ρ = − 0.56 for CC and ρ = − 0.62 for MLO). These correlations were corroborated by the corresponding associations obtained in the adjusted regression analyses.

Conclusions

Results from this study indicate that breast compression parameters may influence absolute and percentage dense volume measured by the automated software.

Key points

• A fair correlation was identified between compression pressure and absolute dense volume

• A moderate correlation was identified between compressed breast thickness and percentage dense volume

• Breast compression may influence automated density estimates

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BI-RADS:

Breast Imaging-Reporting and Data System

BMI:

body mass index

CC:

craniocaudal

MLO:

mediolateral oblique

SD:

standard deviation

VDG:

Volpara density grade

References

  1. Kopans DB (2006) Mammography and the normal breast. Breast imaging. Lippincott Williams & Wilkins, Philadelphia, pp 357–363

    Google Scholar 

  2. McCormack VA, dos Santos SI (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev 15:1159–1169

    Article  Google Scholar 

  3. Mandelson MT, Oestreicher N, Porter PL et al (2000) Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 92:1081–1087

    Article  CAS  PubMed  Google Scholar 

  4. Kavanagh AM, Byrnes GB, Nickson C et al (2008) Using mammographic density to improve breast cancer screening outcomes. Cancer Epidemiol Biomark Prev 17:2818–2824

    Article  Google Scholar 

  5. Moshina N, Ursin G, Roman M, Sebuodegard S, Hofvind S (2016) Positive predictive values by mammographic density and screening mode in the Norwegian Breast Cancer Screening Program. Eur J Radiol 85:248–254

    Article  PubMed  Google Scholar 

  6. Wanders JO, Holland K, Veldhuis WB et al (2017) Volumetric breast density affects performance of digital screening mammography. Breast Cancer Res Treat 162:95–103

    Article  PubMed  Google Scholar 

  7. Desreux J, Bleret V, Lifrange E (2012) Should we individualize breast cancer screening? Maturitas 73:202–205

    Article  CAS  PubMed  Google Scholar 

  8. Brand JS, Czene K, Shepherd JA et al (2014) Automated measurement of volumetric mammographic density: a tool for widespread breast cancer risk assessment. Cancer Epidemiol Biomark Prev 23:1764–1772

    Article  Google Scholar 

  9. Eng A, Gallant Z, Shepherd J et al (2014) Digital mammographic density and breast cancer risk: a case-control study of six alternative density assessment methods. Breast Cancer Res 16:439

    Article  PubMed  PubMed Central  Google Scholar 

  10. Damases CN, Brennan PC, Mello-Thoms C, McEntee MF (2016) Mammographic breast density assessment using automated volumetric software and Breast Imaging Reporting and Data System (BIRADS) categorization by expert radiologists. Acad Radiol 23:70–77

    Article  PubMed  Google Scholar 

  11. Wang J, Azziz A, Fan B et al (2013) Agreement of mammographic measures of volumetric breast density to MRI. PLoS One 8:e81653

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shepherd JA, Kerlikowske K, Ma L et al (2011) Volume of mammographic density and risk of breast cancer. Cancer Epidemiol Biomark Prev 20:1473–1482

    Article  Google Scholar 

  13. Destounis S, Johnston L, Highnam R, Arieno A, Morgan R, Chan A (2017) Using volumetric breast density to quantify the potential masking risk of mammographic density. AJR Am J Roentgenol 208:222–227

    Article  PubMed  Google Scholar 

  14. Highnam R, Brady M, Yaffe MJ, Karssemeijer N, Harvey J (2010) Robust breast composition measurement - Volpara™. In: Martí J, Freixenet J, Oliver A (eds) Lecture notes in computer science: 10th international workshop on digital mammography. Springer-Verlag, Berlin, pp 342–349

    Google Scholar 

  15. Waade GG, Highnam R, Hauge IHR et al (2016) Impact of errors in recorded compressed breast thickness measurements on volumetric density classification using volpara v1.5.0 software. Med Phys 43:2870–2876

    Article  PubMed  Google Scholar 

  16. Hartman K, Highnam R, Warren R, Jackson V (2008) Volumetric Assessment of breast tissue composition from FFDM images. In: Krupinski EA (ed) Digital mammography: 9th international workshop, IWDM 2008 Tucson, AZ, USA, July 20–23, 2008 Proceedings. Springer, Berlin, pp 33–39

    Chapter  Google Scholar 

  17. Carp SA, Selb J, Fang Q et al (2008) Dynamic functional and mechanical response of breast tissue to compression. Opt Express 16:16064–16078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perry N, Broeders M, de Wolf C, Tornberg S, Holland R, von Karsa L (2006) European guidelines for quality assurance in breast cancer screening and diagnosis, 4th edn. European Communities, Luxemburg

  19. Hogg P, Kelly J, Mercer C (2015) Digital mammography: a holistic approach. Springer, London

  20. Branderhorst W, de Groot JE, Highnam R et al (2015) Mammographic compression--a need for mechanical standardization. Eur J Radiol 84:596–602

    Article  PubMed  Google Scholar 

  21. de Groot JE, Branderhorst W, Grimbergen CA, den Heeten GJ, Broeders MJ (2015) Towards personalized compression in mammography: a comparison study between pressure- and force-standardization. Eur J Radiol 84:384–391

    Article  PubMed  Google Scholar 

  22. Mercer CE, Hogg P, Szczepura K, Denton ERE (2013) Practitioner compression force variation in mammography: a 6-year study. Radiography 19:200–206

    Article  Google Scholar 

  23. Wilkinson JSM, Sønnesyn MV, Gullien R, Sagstad S, Hofvind S (2014) Kompresjonskraft i mammografiscreeningen i Oslo [Compression force in mammography screening in Oslo]. Hold Pusten:11–15

  24. Kopans DB (2008) Basic physics and doubts about relationship between mammographically determined tissue density and breast cancer risk. Radiology 246:348–353

    Article  PubMed  Google Scholar 

  25. Poulos A, Rickard M (1997) Compression in mammography and the perception of discomfort. Australas Radiol 41:247–252

    Article  CAS  PubMed  Google Scholar 

  26. Waade GG, Hofvind S, Thompson JD, Highnam R, Hogg P (2013) Development of a phantom to test fully automated breast density software - a work in progress. Radiography. https://doi.org/10.1016/j.radi.2016.09.003

  27. Lau S, Ng KH, Aziz YFA (2016) Volumetric breast density measurement: sensitivity analysis of a relative physics approach. Br J Radiol 89:20160258

    Article  PubMed  PubMed Central  Google Scholar 

  28. VolparaSolutions – Volpara Density. Available via http://www.volparasolutions.com/our-products/volparadensity/. Accessed 14 June 2017

  29. Hofvind S, Geller B, Vacek PM, Thoresen S, Skaane P (2007) Using the European guidelines to evaluate the Norwegian Breast Cancer Screening Program. Eur J Epidemiol 22:447–455

    Article  PubMed  Google Scholar 

  30. Cancer Registry of Norway (2011) Retningslinjer for radiograffaglig arbeid [Guidelines for radiographers]. Available via https://www.kreftregisteret.no/globalassets/mammografiprogrammet/arkiv/publikasjoner-og-brosjyrer/kval-man-radiograf_v1.0_innholdsfortegnelse.pdf. Accessed 14 June 2017

  31. Ghetti C, Borrini A, Ortenzia O, Rossi R, Ordonez PL (2008) Physical characteristics of GE Senographe Essential and DS digital mammography detectors. Med Phys 35:456–463

    Article  PubMed  Google Scholar 

  32. Highnam R, Pan X, Warren R, Jeffreys M, Smith GD, Brady M (2006) Breast composition measurements using retrospective standard mammogram form (SMF). Phys Med Biol 51:2695

    Article  CAS  PubMed  Google Scholar 

  33. van Engeland S, Snoeren PR, Huisman H, Boetes C, Karssemeijer N (2006) Volumetric breast density estimation from full-field digital mammograms. IEEE Trans Med Imaging 25:273–282

    Article  PubMed  Google Scholar 

  34. Cheddad A, Czene K, Eriksson M et al (2014) Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer. PLoS One 9:e110690

    Article  PubMed  PubMed Central  Google Scholar 

  35. Colton T (1974) Statistics in medicine. Little, Brown and Company, Boston

    Google Scholar 

  36. Dustler M, Andersson I, Brorson H et al (2012) Breast compression in mammography: pressure distribution patterns. Acta Radiol 53:973–980

    Article  PubMed  Google Scholar 

  37. Dustler M (2016) Pressure distribution in mammography. Mechanical imaging and implications for breast compression Lund University, Malmö. Available via http://lup.lub.lu.se/record/cee95f3e-60d0-482e-8d08-bab29e809a32. Accessed 14 June 2017

  38. Mercer CE, Hogg P, Lawson R, Diffey J, Denton ERE (2013) Practitioner compression force variability in mammography: a preliminary study. Br J Radiol 86:20110596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stuedal A, Ma H, Bernstein L, Pike MC, Ursin G (2008) Does breast size modify the association between mammographic density and breast cancer risk? Cancer Epidemiol Biomark Prev 17:621–627

    Article  Google Scholar 

  40. Boyd NF, Li Q, Melnichouk O et al (2014) Evidence that breast tissue stiffness is associated with risk of breast cancer. PLoS One 9:e100937

    Article  PubMed  PubMed Central  Google Scholar 

  41. Khan-Perez J, Harkness E, Mercer C et al (2014) Volumetric breast density and radiographic parameters. In: Fujita H, Hara T, Muramatsu C (eds) Breast imaging: 12th international workshop, IWDM 2014, Gifu City, Japan, June 29–July 2, 2014 Proceedings. Springer International Publishing, Cham, pp 265–272

    Google Scholar 

  42. Khan-Perez J, Mercer C, Bydder M et al (2013) Breast compression, compressed breast thickness and volumetric breast density. Breast Cancer Res 15:P10

    Article  PubMed Central  Google Scholar 

  43. Olson JE, Sellers TA, Scott CG et al (2012) The influence of mammogram acquisition on the mammographic density and breast cancer association in the Mayo Mammography Health Study cohort. Breast Cancer Res 14:R147

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gubern-Merida A, Kallenberg M, Platel B, Mann RM, Marti R, Karssemeijer N (2014) Volumetric breast density estimation from full-field digital mammograms: a validation study. PLoS One 9:e85952

    Article  PubMed  PubMed Central  Google Scholar 

  45. van der Waal D, den Heeten GJ, Pijnappel RM et al (2015) Comparing visually assessed BI-RADS breast density and automated volumetric breast density software: a cross-sectional study in a breast cancer screening setting. PLoS One 10:e0136667

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moshina N, Sebuodegard S, Hofvind S (2017) Is breast compression associated with breast cancer detection and other early performance measures in a population-based breast cancer screening program? Breast Cancer Res Treat 163:605–613

    Article  PubMed  Google Scholar 

  47. Waade GG, Moshina N, Saebuodegard S, Hogg P, Hofvind S (2017) Compression forces used in the Norwegian Breast Cancer Screening Program. Br J Radiol. https://doi.org/10.1259/bjr.20160770:20160770

  48. Branderhorst W, de Groot JE, Neeter LM et al (2016) Force balancing in mammographic compression. Med Phys 43:518

    Article  CAS  PubMed  Google Scholar 

  49. Heine JJ, Cao K, Thomas JA (2010) Effective radiation attenuation calibration for breast density: compression thickness influences and correction. Biomed Eng Online 9:73

    Article  PubMed  PubMed Central  Google Scholar 

  50. Broeders MJM, ten Voorde M, Veldkamp WJH et al (2015) Comparison of a flexible versus a rigid breast compression paddle: pain experience, projected breast area, radiation dose and technical image quality. Eur Radiol 25:821–829

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Hilde Trå Hervig and Gry Rosseid, radiographers at the breast centre of Stavanger University Hospital, and Berit Hanestad, radiographer at the breast centre of Haukeland University Hospital, for help and support in collecting and processing the density data used in this study.

Funding

This study was supported by a grant from the Norwegian Breast Cancer Society, funded by ExtraStiftelsen (2013-2-0280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solveig Hofvind.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Solveig Hofvind.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

The authors Sofie Sebuødegård and Marta Roman have significant statistical expertise.

Informed consent

Written informed consent was not required for this study because we used de-identified data from women who did not refuse the Cancer Registry of Norway the right to use their data for quality assurance and research.

Ethical approval

Institutional review board approval was obtained.

Methodology

• retrospective

• performed at one institution

Electronic supplementary material

ESM 1

(DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshina, N., Roman, M., Waade, G.G. et al. Breast compression parameters and mammographic density in the Norwegian Breast Cancer Screening Programme. Eur Radiol 28, 1662–1672 (2018). https://doi.org/10.1007/s00330-017-5104-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5104-5

Keywords

Navigation