Journal of Mathematical Biology

, Volume 78, Issue 4, pp 1033–1065 | Cite as

Fixation probabilities for the Moran process in evolutionary games with two strategies: graph shapes and large population asymptotics

  • Evandro P. de Souza
  • Eliza M. Ferreira
  • Armando G. M. NevesEmail author


This paper is based on the complete classification of evolutionary scenarios for the Moran process with two strategies given by Taylor et al. (Bull Math Biol 66(6):1621–1644, 2004. Their classification is based on whether each strategy is a Nash equilibrium and whether the fixation probability for a single individual of each strategy is larger or smaller than its value for neutral evolution. We improve on this analysis by showing that each evolutionary scenario is characterized by a definite graph shape for the fixation probability function. A second class of results deals with the behavior of the fixation probability when the population size tends to infinity. We develop asymptotic formulae that approximate the fixation probability in this limit and conclude that some of the evolutionary scenarios cannot exist when the population size is large.


Markov chains Asymptotic analysis Birth death processes 

Mathematics Subject Classification

91A22 92D15 60J20 



We thank Max O. Souza for early discussions and encouragement for writing this paper.


  1. Allen LJS (2011) An introduction to stochastic processes with applications to biology. Chapman & Hall, Boca RatonzbMATHGoogle Scholar
  2. Antal T, Scheuring I (2006) Fixation of strategies for an evolutionary game in finite populations. Bull Math Biol 68(8):1923–1944. MathSciNetCrossRefzbMATHGoogle Scholar
  3. Apostol TM (1999) An elementary view of Euler’s summation formula. Am Math Mon 106:409–418MathSciNetCrossRefzbMATHGoogle Scholar
  4. Ashcroft P, Altrock PM, Galla T (2014) Fixation in finite populations evolving in fluctuating environments. J R Soc Interface 11(100). URL,
  5. Chalub FA, Souza MO (2009) From discrete to continuous evolution models: a unifying approach to drift-diffusion and replicator dynamics. Theor Popul Biol 76(4):268–277. CrossRefzbMATHGoogle Scholar
  6. Chalub FACC, Souza MO (2016) Fixation in large populations: a continuous view of a discrete problem. J Math Biol 72(1):283–330. MathSciNetCrossRefzbMATHGoogle Scholar
  7. Durand G, Lessard S (2016) Fixation probability in a two-locus intersexual selection model. Theor Popul Biol 109:75–87. CrossRefzbMATHGoogle Scholar
  8. Durney CH, Case SO, Pleimling M (2012) Stochastic evolution of four species in cyclic competition. J Stat Mech Theory Exp 2012(06):P06014CrossRefGoogle Scholar
  9. Ewens WJ (2004) Mathematical population genetics I: theoretical introduction. Interdisciplinary applied mathematics. Springer, New YorkCrossRefzbMATHGoogle Scholar
  10. Healey D, Axelrod K, Gore J (2016) Negative frequency-dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population. Mol Syst Biol 12:877CrossRefGoogle Scholar
  11. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  12. Maynard Smith J, Price G (1973) The logic of animal conflicts. Nature 246:15–18CrossRefzbMATHGoogle Scholar
  13. McLoone B, Fan WTL, Pham A, Smead R, Loewe L (2018) Stochasticity, selection, and the evolution of cooperation in a two-level Moran model of the snowdrift game. Complexity.
  14. Mobilia M (2011) Fixation and polarization in a three-species opinion dynamics model. EPL 95(5):50002. CrossRefGoogle Scholar
  15. Moran PAP (1958) Random processes in genetics. Proc Camb Philos Soc 54(1):60MathSciNetCrossRefzbMATHGoogle Scholar
  16. Nowak M (2006) Evolutionary dynamics, 1st edn. The Belknap of Harvard University Press, CambridgezbMATHGoogle Scholar
  17. Nowak MA, Sigmund K (1992) Tit for tat in heterogeneus populations. Nature 355:255–253CrossRefGoogle Scholar
  18. Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428(6983):646–650. CrossRefGoogle Scholar
  19. Núñez Rodríguez I, Neves AGM (2016) Evolution of cooperation in a particular case of the infinitely repeated prisoner’s dilemma with three strategies. J Math Biol 73(6):1665–1690. MathSciNetCrossRefzbMATHGoogle Scholar
  20. Olver FWJ (1974) Asymptotics and special functions. Academic Press, San DiegozbMATHGoogle Scholar
  21. Sample C, Allen B (2017) The limits of weak selection and large population size in evolutionary game theory. J Math Biol 75(5):1285–1317MathSciNetCrossRefzbMATHGoogle Scholar
  22. Taylor C, Fudenberg D, Sasaki A, Nowak MA (2004) Evolutionary game dynamics in finite populations. Bull Math Biol 66(6):1621–1644. MathSciNetCrossRefzbMATHGoogle Scholar
  23. Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40:145–156MathSciNetCrossRefzbMATHGoogle Scholar
  24. Traulsen A, Claussen JC, Hauert C (2012) Stochastic differential equations for evolutionary dynamics with demographic noise and mutations. Phys Rev E 85(041):901. Google Scholar
  25. Xu Z, Zhang J, Zhang C, Chen Z (2016) Fixation of strategies driven by switching probabilities in evolutionary games. EPL 116(5):58002CrossRefGoogle Scholar
  26. Zeeman CE (1980) Population dynamics from game theory. In: Lecture notes in mathematics, vol 819. Springer, 497pGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Evandro P. de Souza
    • 1
  • Eliza M. Ferreira
    • 2
  • Armando G. M. Neves
    • 1
    Email author
  1. 1.Departamento de MatemáticaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Ciências ExatasUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations