Seminars in Immunopathology

, Volume 34, Issue 1, pp 43–62 | Cite as

Fibrinogen as a key regulator of inflammation in disease

  • Dimitrios Davalos
  • Katerina AkassoglouEmail author


The interaction of coagulation factors with the perivascular environment affects the development of disease in ways that extend beyond their traditional roles in the acute hemostatic cascade. Key molecular players of the coagulation cascade like tissue factor, thrombin, and fibrinogen are epidemiologically and mechanistically linked with diseases with an inflammatory component. Moreover, the identification of novel molecular mechanisms linking coagulation and inflammation has highlighted factors of the coagulation cascade as new targets for therapeutic intervention in a wide range of inflammatory human diseases. In particular, a proinflammatory role for fibrinogen has been reported in vascular wall disease, stroke, spinal cord injury, brain trauma, multiple sclerosis, Alzheimer’s disease, rheumatoid arthritis, bacterial infection, colitis, lung and kidney fibrosis, Duchenne muscular dystrophy, and several types of cancer. Genetic and pharmacologic studies have unraveled pivotal roles for fibrinogen in determining the extent of local or systemic inflammation. As cellular and molecular mechanisms for fibrinogen functions in tissues are identified, the role of fibrinogen is evolving from a marker of vascular rapture to a multi-faceted signaling molecule with a wide spectrum of functions that can tip the balance between hemostasis and thrombosis, coagulation and fibrosis, protection from infection and extensive inflammation, and eventually life and death. This review will discuss some of the main molecular links between coagulation and inflammation and will focus on the role of fibrinogen in inflammatory disease highlighting its unique structural properties, cellular targets, and signal transduction pathways that make it a potent proinflammatory mediator and a potential therapeutic target.


Anticoagulant therapy Inflammatory disease Autoimmunity Plasminogen Complement receptor 3 CD11b/CD18 Blood brain barrier Macrophages Microglia Multiple sclerosis Atherosclerosis Stroke Rheumatoid arthritis Alzheimer’s disease 



We thank Gary Howard for editorial assistance. This work was supported by the National Multiple Sclerosis Society grant RG4595A1/T to D.D. and the National Institutes of Health/National Institute of Neurological Disorders and Stroke R01 grants NS051470, NS052189, and NS066361 to K.A.

Conflict of interest

The authors declare that they have no competing financial or other interests related to this manuscript.


  1. 1.
    Degen JL (1999) Hemostatic factors and inflammatory disease. Thromb Haemost 82(2):858–864PubMedGoogle Scholar
  2. 2.
    Degen JL, Drew AF, Palumbo JS, Kombrinck KW, Bezerra JA, Danton MJ, Holmback K, Suh TT (2001) Genetic manipulation of fibrinogen and fibrinolysis in mice. Ann N Y Acad Sci 936:276–290PubMedCrossRefGoogle Scholar
  3. 3.
    Doolittle RF (2009) Step-by-step evolution of vertebrate blood coagulation. Cold Spring Harb Symp Quant Biol 74:35–40PubMedCrossRefGoogle Scholar
  4. 4.
    Davie EW, Ratnoff OD (1964) Waterfall sequence for intrinsic blood clotting. Science 145:1310–1312PubMedCrossRefGoogle Scholar
  5. 5.
    Macfarlane RG (1964) An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202:498–499PubMedCrossRefGoogle Scholar
  6. 6.
    Schoenmakers SH, Reitsma PH, Spek CA (2005) Blood coagulation factors as inflammatory mediators. Blood Cells Mol Dis 34(1):30–37PubMedCrossRefGoogle Scholar
  7. 7.
    Adams RL, Bird RJ (2009) Review article: coagulation cascade and therapeutics update: relevance to nephrology. Part 1: overview of coagulation, thrombophilias and history of anticoagulants. Nephrology (Carlton) 14(5):462–470CrossRefGoogle Scholar
  8. 8.
    Lippi G, Favaloro EJ, Franchini M, Guidi GC (2009) Milestones and perspectives in coagulation and hemostasis. Semin Thromb Hemost 35(1):9–22PubMedCrossRefGoogle Scholar
  9. 9.
    Mackman N (2009) The many faces of tissue factor. J Thromb Haemost 7(Suppl 1):136–139PubMedCrossRefGoogle Scholar
  10. 10.
    Cimmino G, D’Amico C, Vaccaro V, D’Anna M, Golino P (2011) The missing link between atherosclerosis, inflammation and thrombosis: is it tissue factor? Expert Rev Cardiovasc Ther 9(4):517–523PubMedCrossRefGoogle Scholar
  11. 11.
    Strukova SM (2001) Thrombin as a regulator of inflammation and reparative processes in tissues. Biochemistry (Mosc) 66(1):8–18CrossRefGoogle Scholar
  12. 12.
    Licari LG, Kovacic JP (2009) Thrombin physiology and pathophysiology. J Vet Emerg Crit Care (San Antonio) 19(1):11–22CrossRefGoogle Scholar
  13. 13.
    Drake WT, Lopes NN, Fenton JW 2nd, Issekutz AC (1992) Thrombin enhancement of interleukin-1 and tumor necrosis factor-alpha induced polymorphonuclear leukocyte migration. Lab Invest 67(5):617–627PubMedGoogle Scholar
  14. 14.
    Sower LE, Froelich CJ, Carney DH, Fenton JW 2nd, Klimpel GR (1995) Thrombin induces IL-6 production in fibroblasts and epithelial cells. Evidence for the involvement of the seven-transmembrane domain (STD) receptor for alpha-thrombin. J Immunol 155(2):895–901PubMedGoogle Scholar
  15. 15.
    Anrather D, Millan MT, Palmetshofer A, Robson SC, Geczy C, Ritchie AJ, Bach FH, Ewenstein BM (1997) Thrombin activates nuclear factor-kappaB and potentiates endothelial cell activation by TNF. J Immunol 159(11):5620–5628PubMedGoogle Scholar
  16. 16.
    Szaba FM, Smiley ST (2002) Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 99(3):1053–1059PubMedCrossRefGoogle Scholar
  17. 17.
    Serra MF, Diaz BL, Barreto EO, Cordeiro RS, Nazare Meirelles MN, Williams TJ, Martins MA, Silva PM (2000) Mechanism underlying acute resident leukocyte disappearance induced by immunological and non-immunological stimuli in rats: evidence for a role for the coagulation system. Inflamm Res 49(12):708–713PubMedCrossRefGoogle Scholar
  18. 18.
    Martorell L, Martinez-Gonzalez J, Rodriguez C, Gentile M, Calvayrac O, Badimon L (2008) Thrombin and protease-activated receptors (PARs) in atherothrombosis. Thromb Haemost 99(2):305–315PubMedGoogle Scholar
  19. 19.
    Shpacovitch V, Feld M, Hollenberg MD, Luger TA, Steinhoff M (2008) Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J Leukoc Biol 83(6):1309–1322PubMedCrossRefGoogle Scholar
  20. 20.
    Weisel JW (2005) Fibrinogen and fibrin. Adv Protein Chem 70:247–299PubMedCrossRefGoogle Scholar
  21. 21.
    Tennent GA, Brennan SO, Stangou AJ, O’Grady J, Hawkins PN, Pepys MB (2007) Human plasma fibrinogen is synthesized in the liver. Blood 109(5):1971–1974PubMedCrossRefGoogle Scholar
  22. 22.
    Miller LL, Bly CG, Watson ML, Bale WF (1951) The dominant role of the liver in plasma protein synthesis; a direct study of the isolated perfused rat liver with the aid of lysine-epsilon-C14. J Exp Med 94(5):431–453PubMedCrossRefGoogle Scholar
  23. 23.
    Hall CE, Slayter HS (1959) The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol 5(1):11–16PubMedCrossRefGoogle Scholar
  24. 24.
    Fuss C, Palmaz JC, Sprague EA (2001) Fibrinogen: structure, function, and surface interactions. J Vasc Interv Radiol 12(6):677–682PubMedCrossRefGoogle Scholar
  25. 25.
    Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF (2009) Crystal structure of human fibrinogen. Biochemistry 48(18):3877–3886PubMedCrossRefGoogle Scholar
  26. 26.
    Doolittle RF, Spraggon G, Everse SJ (1998) Three-dimensional structural studies on fragments of fibrinogen and fibrin. Curr Opin Struct Biol 8(6):792–798PubMedCrossRefGoogle Scholar
  27. 27.
    Yang Z, Mochalkin I, Veerapandian L, Riley M, Doolittle RF (2000) Crystal structure of native chicken fibrinogen at 5.5-A resolution. Proc Natl Acad Sci USA 97(8):3907–3912PubMedCrossRefGoogle Scholar
  28. 28.
    Brown JH, Volkmann N, Jun G, Henschen-Edman AH, Cohen C (2000) The crystal structure of modified bovine fibrinogen. Proc Natl Acad Sci USA 97(1):85–90PubMedCrossRefGoogle Scholar
  29. 29.
    Doolittle RF, Yang Z, Mochalkin I (2001) Crystal structure studies on fibrinogen and fibrin. Ann N Y Acad Sci 936:31–43PubMedCrossRefGoogle Scholar
  30. 30.
    Ryu JK, Davalos D, Akassoglou K (2009) Fibrinogen signal transduction in the nervous system. J Thromb Haemost 7(Suppl 1):151–154PubMedCrossRefGoogle Scholar
  31. 31.
    Adams RA, Passino M, Sachs BD, Nuriel T, Akassoglou K (2004) Fibrin mechanisms and functions in nervous system pathology. Mol Interv 4(3):163–176PubMedGoogle Scholar
  32. 32.
    Lisman T, Weeterings C, de Groot PG (2005) Platelet aggregation: involvement of thrombin and fibrin(ogen). Front Biosci 10:2504–2517PubMedCrossRefGoogle Scholar
  33. 33.
    Phillips DR, Charo IF, Parise LV, Fitzgerald LA (1988) The platelet membrane glycoprotein IIb–IIIa complex. Blood 71(4):831–843PubMedGoogle Scholar
  34. 34.
    Holmback K, Danton MJ, Suh TT, Daugherty CC, Degen JL (1996) Impaired platelet aggregation and sustained bleeding in mice lacking the fibrinogen motif bound by integrin alpha IIb beta 3. EMBO J 15(21):5760–5771PubMedGoogle Scholar
  35. 35.
    Farrell DH, Thiagarajan P (1994) Binding of recombinant fibrinogen mutants to platelets. J Biol Chem 269(1):226–231PubMedGoogle Scholar
  36. 36.
    Rooney MM, Parise LV, Lord ST (1996) Dissecting clot retraction and platelet aggregation. Clot retraction does not require an intact fibrinogen gamma chain C terminus. J Biol Chem 271(15):8553–8555PubMedCrossRefGoogle Scholar
  37. 37.
    Bugge TH, Kombrinck KW, Flick MJ, Daugherty CC, Danton MJ, Degen JL (1996) Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 87(4):709–719PubMedCrossRefGoogle Scholar
  38. 38.
    Lijnen HR (2001) Elements of the fibrinolytic system. Ann N Y Acad Sci 936:226–236PubMedCrossRefGoogle Scholar
  39. 39.
    Sidelmann JJ, Gram J, Jespersen J, Kluft C (2000) Fibrin clot formation and lysis: basic mechanisms. Semin Thromb Hemost 26(6):605–618PubMedCrossRefGoogle Scholar
  40. 40.
    Mosesson MW (1999) Dysfibrinogenemia and thrombosis. Semin Thromb Hemost 25(3):311–319PubMedCrossRefGoogle Scholar
  41. 41.
    Asselta R, Duga S, Tenchini ML (2006) The molecular basis of quantitative fibrinogen disorders. J Thromb Haemost 4(10):2115–2129PubMedCrossRefGoogle Scholar
  42. 42.
    Bugge TH, Flick MJ, Daugherty CC, Degen JL (1995) Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev 9(7):794–807PubMedCrossRefGoogle Scholar
  43. 43.
    Busso N, Peclat V, Van Ness K, Kolodziesczyk E, Degen J, Bugge T, So A (1998) Exacerbation of antigen-induced arthritis in urokinase-deficient mice. J Clin Invest 102(1):41–50PubMedCrossRefGoogle Scholar
  44. 44.
    Akassoglou K, Kombrinck KW, Degen JL, Strickland S (2000) Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. J Cell Biol 149(5):1157–1166PubMedCrossRefGoogle Scholar
  45. 45.
    Adams RA, Schachtrup C, Davalos D, Tsigelny I, Akassoglou K (2007) Fibrinogen signal transduction as a mediator and therapeutic target in inflammation: lessons from multiple sclerosis. Curr Med Chem 14(27):2925–2936PubMedCrossRefGoogle Scholar
  46. 46.
    Lowe GD (2005) Circulating inflammatory markers and risks of cardiovascular and non-cardiovascular disease. J Thromb Haemost 3(8):1618–1627PubMedCrossRefGoogle Scholar
  47. 47.
    Skogen WF, Senior RM, Griffin GL, Wilner GD (1988) Fibrinogen-derived peptide B beta 1–42 is a multidomained neutrophil chemoattractant. Blood 71(5):1475–1479PubMedGoogle Scholar
  48. 48.
    Solovjov DA, Pluskota E, Plow EF (2005) Distinct roles for the alpha and beta subunits in the functions of integrin alphaMbeta2. J Biol Chem 280(2):1336–1345PubMedCrossRefGoogle Scholar
  49. 49.
    Ugarova TP, Yakubenko VP (2001) Recognition of fibrinogen by leukocyte integrins. Ann N Y Acad Sci 936:368–385PubMedCrossRefGoogle Scholar
  50. 50.
    Lishko VK, Podolnikova NP, Yakubenko VP, Yakovlev S, Medved L, Yadav SP, Ugarova TP (2004) Multiple binding sites in fibrinogen for integrin alpha Mbeta 2 (Mac-1). J Biol Chem 279(43):44897–44906Google Scholar
  51. 51.
    Lishko VK, Yakubenko VP, Hertzberg KM, Grieninger G, Ugarova TP (2001) The alternatively spliced alpha(E)C domain of human fibrinogen-420 is a novel ligand for leukocyte integrins alpha(M)beta(2) and alpha(X)beta(2). Blood 98(8):2448–2455PubMedCrossRefGoogle Scholar
  52. 52.
    Ugarova TP, Lishko VK, Podolnikova NP, Okumura N, Merkulov SM, Yakubenko VP, Yee VC, Lord ST, Haas TA (2003) Sequence gamma 377–395(P2), but not gamma 190–202(P1), is the binding site for the alpha MI-domain of integrin alpha M beta 2 in the gamma C-domain of fibrinogen. Biochemistry 42(31):9365–9373PubMedCrossRefGoogle Scholar
  53. 53.
    Lishko VK, Kudryk B, Yakubenko VP, Yee VC, Ugarova TP (2002) Regulated unmasking of the cryptic binding site for integrin alpha M beta 2 in the gamma C-domain of fibrinogen. Biochemistry 41(43):12942–12951PubMedCrossRefGoogle Scholar
  54. 54.
    Fan ST, Edgington TS (1993) Integrin regulation of leukocyte inflammatory functions. CD11b/CD18 enhancement of the tumor necrosis factor-alpha responses of monocytes. J Immunol 150(7):2972–2980PubMedGoogle Scholar
  55. 55.
    Perez RL, Roman J (1995) Fibrin enhances the expression of IL-1 beta by human peripheral blood mononuclear cells. Implications in pulmonary inflammation. J Immunol 154(4):1879–1887PubMedGoogle Scholar
  56. 56.
    Perez RL, Ritzenthaler JD, Roman J (1999) Transcriptional regulation of the interleukin-1beta promoter via fibrinogen engagement of the CD18 integrin receptor. Am J Respir Cell Mol Biol 20(5):1059–1066PubMedGoogle Scholar
  57. 57.
    Flick MJ, Du X, Witte DP, Jirouskova M, Soloviev DA, Busuttil SJ, Plow EF, Degen JL (2004) Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest 113(11):1596–1606PubMedGoogle Scholar
  58. 58.
    Tang L, Ugarova TP, Plow EF, Eaton JW (1996) Molecular determinants of acute inflammatory responses to biomaterials. J Clin Invest 97(5):1329–1334PubMedCrossRefGoogle Scholar
  59. 59.
    Vidal B, Serrano AL, Tjwa M, Suelves M, Ardite E, De Mori R, Baeza-Raja B, Martinez de Lagran M, Lafuste P, Ruiz-Bonilla V, Jardi M, Gherardi R, Christov C, Dierssen M, Carmeliet P, Degen JL, Dewerchin M, Munoz-Canoves P (2008) Fibrinogen drives dystrophic muscle fibrosis via a TGFbeta/alternative macrophage activation pathway. Genes Dev 22(13):1747–1752PubMedCrossRefGoogle Scholar
  60. 60.
    Adams RA, Bauer J, Flick MJ, Sikorski SL, Nuriel T, Lassmann H, Degen JL, Akassoglou K (2007) The fibrin-derived gamma377–395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 204(3):571–582PubMedCrossRefGoogle Scholar
  61. 61.
    Flick MJ, LaJeunesse CM, Talmage KE, Witte DP, Palumbo JS, Pinkerton MD, Thornton S, Degen JL (2007) Fibrin(ogen) exacerbates inflammatory joint disease through a mechanism linked to the integrin alphaMbeta2 binding motif. J Clin Invest 117(11):3224–3235PubMedCrossRefGoogle Scholar
  62. 62.
    Steinbrecher KA, Horowitz NA, Blevins EA, Barney KA, Shaw MA, Harmel-Laws E, Finkelman FD, Flick MJ, Pinkerton MD, Talmage KE, Kombrinck KW, Witte DP, Palumbo JS (2010) Colitis-associated cancer is dependent on the interplay between the hemostatic and inflammatory systems and supported by integrin alpha(M)beta(2) engagement of fibrinogen. Cancer Res 70(7):2634–2643PubMedCrossRefGoogle Scholar
  63. 63.
    Nham SU (1999) Characteristics of fibrinogen binding to the domain of CD11c, an alpha subunit of p150,95. Biochem Biophys Res Commun 264(3):630–634PubMedCrossRefGoogle Scholar
  64. 64.
    Oki T, Kitaura J, Eto K, Lu Y, Maeda-Yamamoto M, Inagaki N, Nagai H, Yamanishi Y, Nakajima H, Kumagai H, Kitamura T (2006) Integrin alphaIIbbeta3 induces the adhesion and activation of mast cells through interaction with fibrinogen. J Immunol 176(1):52–60PubMedGoogle Scholar
  65. 65.
    Basheer M, Schwalb H, Nesher M, Gilon D, Shefler I, Mekori YA, Shapira OM, Gorodetsky R (2010) Mast cell activation by fibrinogen-related homologous c-terminal peptides (haptides) modulates systemic blood pressure. J Allergy Clin Immunol 126(5):1041–1048PubMedCrossRefGoogle Scholar
  66. 66.
    Lominadze D, Dean WL, Tyagi SC, Roberts AM (2010) Mechanisms of fibrinogen-induced microvascular dysfunction during cardiovascular disease. Acta Physiol (Oxf) 198(1):1–13CrossRefGoogle Scholar
  67. 67.
    Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167(5):2887–2894PubMedGoogle Scholar
  68. 68.
    Hodgkinson CP, Patel K, Ye S (2008) Functional Toll-like receptor 4 mutations modulate the response to fibrinogen. Thromb Haemost 100(2):301–307PubMedGoogle Scholar
  69. 69.
    Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12(3):204–212PubMedCrossRefGoogle Scholar
  70. 70.
    Lyon C, Mill C, Tsaousi A, Williams H, George S (2011) Regulation of VSMC behavior by the cadherin–catenin complex. Front Biosci 16:644–657PubMedCrossRefGoogle Scholar
  71. 71.
    Paraskevas KI, Baker DM, Vrentzos GE, Mikhailidis DP (2008) The role of fibrinogen and fibrinolysis in peripheral arterial disease. Thromb Res 122(1):1–12PubMedCrossRefGoogle Scholar
  72. 72.
    Kannel WB (2005) Overview of hemostatic factors involved in atherosclerotic cardiovascular disease. Lipids 40(12):1215–1220PubMedCrossRefGoogle Scholar
  73. 73.
    Brevetti G, Silvestro A, Di Giacomo S, Bucur R, Di Donato A, Schiano V, Scopacasa F (2003) Endothelial dysfunction in peripheral arterial disease is related to increase in plasma markers of inflammation and severity of peripheral circulatory impairment but not to classic risk factors and atherosclerotic burden. J Vasc Surg 38(2):374–379PubMedCrossRefGoogle Scholar
  74. 74.
    McDermott MM, Guralnik JM, Corsi A, Albay M, Macchi C, Bandinelli S, Ferrucci L (2005) Patterns of inflammation associated with peripheral arterial disease: the InCHIANTI study. Am Heart J 150(2):276–281PubMedCrossRefGoogle Scholar
  75. 75.
    Tzoulaki I, Murray GD, Lee AJ, Rumley A, Lowe GD, Fowkes FG (2007) Inflammatory, haemostatic, and rheological markers for incident peripheral arterial disease: Edinburgh Artery Study. Eur Heart J 28(3):354–362PubMedCrossRefGoogle Scholar
  76. 76.
    Dalmon J, Laurent M, Courtois G (1993) The human beta fibrinogen promoter contains a hepatocyte nuclear factor 1-dependent interleukin-6-responsive element. Mol Cell Biol 13(2):1183–1193PubMedGoogle Scholar
  77. 77.
    Ramji DP, Vitelli A, Tronche F, Cortese R, Ciliberto G (1993) The two C/EBP isoforms, IL-6DBP/NF-IL6 and C/EBP delta/NF-IL6 beta, are induced by IL-6 to promote acute phase gene transcription via different mechanisms. Nucleic Acids Res 21(2):289–294PubMedCrossRefGoogle Scholar
  78. 78.
    Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265(3):621–636PubMedGoogle Scholar
  79. 79.
    Libra M, Signorelli SS, Bevelacqua Y, Navolanic PM, Bevelacqua V, Polesel J, Talamini R, Stivala F, Mazzarino MC, Malaponte G (2006) Analysis of G(−174)C IL-6 polymorphism and plasma concentrations of inflammatory markers in patients with type 2 diabetes and peripheral arterial disease. J Clin Pathol 59(2):211–215PubMedCrossRefGoogle Scholar
  80. 80.
    Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3(8):1894–1904PubMedCrossRefGoogle Scholar
  81. 81.
    Koenig W (2003) Fibrin(ogen) in cardiovascular disease: an update. Thromb Haemost 89(4):601–609PubMedGoogle Scholar
  82. 82.
    Mikhailidis DP, Barradas MA, Jeremy JY, Dandona P (1987) Fibrinogen enhances and albumin reduces RBC aggregation. Angiology 38(8):615–616PubMedGoogle Scholar
  83. 83.
    Ernst E, Matrai A, Marshall M (1988) Blood rheology in patients with transient ischemic attacks. Stroke 19(5):634–636PubMedCrossRefGoogle Scholar
  84. 84.
    Coull BM, Beamer N, de Garmo P, Sexton G, Nordt F, Knox R, Seaman GV (1991) Chronic blood hyperviscosity in subjects with acute stroke, transient ischemic attack, and risk factors for stroke. Stroke 22(2):162–168PubMedCrossRefGoogle Scholar
  85. 85.
    Lowe GD, Lee AJ, Rumley A, Price JF, Fowkes FG (1997) Blood viscosity and risk of cardiovascular events: the Edinburgh artery study. Br J Haematol 96(1):168–173PubMedCrossRefGoogle Scholar
  86. 86.
    Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91(9):769–775PubMedCrossRefGoogle Scholar
  87. 87.
    Ruggeri ZM (1993) Mechanisms of shear-induced platelet adhesion and aggregation. Thromb Haemost 70(1):119–123PubMedGoogle Scholar
  88. 88.
    Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91(1):327–387PubMedCrossRefGoogle Scholar
  89. 89.
    Kwaan HC (2010) Role of plasma proteins in whole blood viscosity: a brief clinical review. Clin Hemorheol Microcirc 44(3):167–176PubMedGoogle Scholar
  90. 90.
    Sen U, Tyagi N, Patibandla PK, Dean WL, Tyagi SC, Roberts AM, Lominadze D (2009) Fibrinogen-induced endothelin-1 production from endothelial cells. Am J Physiol Cell Physiol 296(4):C840–C847PubMedCrossRefGoogle Scholar
  91. 91.
    Patibandla PK, Tyagi N, Dean WL, Tyagi SC, Roberts AM, Lominadze D (2009) Fibrinogen induces alterations of endothelial cell tight junction proteins. J Cell Physiol 221(1):195–203PubMedCrossRefGoogle Scholar
  92. 92.
    Tyagi N, Roberts AM, Dean WL, Tyagi SC, Lominadze D (2008) Fibrinogen induces endothelial cell permeability. Mol Cell Biochem 307(1–2):13–22PubMedGoogle Scholar
  93. 93.
    Bini A, Fenoglio JJ Jr, Mesa-Tejada R, Kudryk B, Kaplan KL (1989) Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis. Use of monoclonal antibodies. Arteriosclerosis 9(1):109–121PubMedCrossRefGoogle Scholar
  94. 94.
    Lu PP, Liu JT, Liu N, Guo F, Ji YY, Pang X (2011) Pro-inflammatory effect of fibrinogen and FDP on vascular smooth muscle cells by IL-6, TNF-alpha and iNOS. Life Sci 88:839–845PubMedCrossRefGoogle Scholar
  95. 95.
    Naito M, Funaki C, Hayashi T, Yamada K, Asai K, Yoshimine N, Kuzuya F (1992) Substrate-bound fibrinogen, fibrin and other cell attachment-promoting proteins as a scaffold for cultured vascular smooth muscle cells. Atherosclerosis 96(2–3):227–234PubMedCrossRefGoogle Scholar
  96. 96.
    Shattil SJ, Hoxie JA, Cunningham M, Brass LF (1985) Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem 260(20):11107–11114PubMedGoogle Scholar
  97. 97.
    Nofer JR, Brodde MF, Kehrel BE (2010) High-density lipoproteins, platelets and the pathogenesis of atherosclerosis. Clin Exp Pharmacol Physiol 37(7):726–735PubMedCrossRefGoogle Scholar
  98. 98.
    Yang H, Lang S, Zhai Z, Li L, Kahr WH, Chen P, Brkic J, Spring CM, Flick MJ, Degen JL, Freedman J, Ni H (2009) Fibrinogen is required for maintenance of platelet intracellular and cell-surface P-selectin expression. Blood 114(2):425–436PubMedCrossRefGoogle Scholar
  99. 99.
    Kasirer-Friede A, Kahn ML, Shattil SJ (2007) Platelet integrins and immunoreceptors. Immunol Rev 218:247–264PubMedCrossRefGoogle Scholar
  100. 100.
    Relou IA, Hackeng CM, Akkerman JW, Malle E (2003) Low-density lipoprotein and its effect on human blood platelets. Cell Mol Life Sci 60(5):961–971PubMedGoogle Scholar
  101. 101.
    Iwaki T, Sandoval-Cooper MJ, Brechmann M, Ploplis VA, Castellino FJ (2006) A fibrinogen deficiency accelerates the initiation of LDL cholesterol-driven atherosclerosis via thrombin generation and platelet activation in genetically predisposed mice. Blood 107(10):3883–3891PubMedCrossRefGoogle Scholar
  102. 102.
    Lindemann S, Tolley ND, Dixon DA, McIntyre TM, Prescott SM, Zimmerman GA, Weyrich AS (2001) Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 154(3):485–490PubMedCrossRefGoogle Scholar
  103. 103.
    Henn V, Slupsky JR, Grafe M, Anagnostopoulos I, Forster R, Muller-Berghaus G, Kroczek RA (1998) CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391(6667):591–594PubMedCrossRefGoogle Scholar
  104. 104.
    von Hundelshausen P, Weber KS, Huo Y, Proudfoot AE, Nelson PJ, Ley K, Weber C (2001) RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103(13):1772–1777Google Scholar
  105. 105.
    Dixon DA, Tolley ND, Bemis-Standoli K, Martinez ML, Weyrich AS, Morrow JD, Prescott SM, Zimmerman GA (2006) Expression of COX-2 in platelet–monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. J Clin Invest 116(10):2727–2738PubMedGoogle Scholar
  106. 106.
    May AE, Kalsch T, Massberg S, Herouy Y, Schmidt R, Gawaz M (2002) Engagement of glycoprotein IIb/IIIa (alpha(IIb)beta3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation 106(16):2111–2117PubMedCrossRefGoogle Scholar
  107. 107.
    Schober A, Manka D, von Hundelshausen P, Huo Y, Hanrath P, Sarembock IJ, Ley K, Weber C (2002) Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 106(12):1523–1529PubMedCrossRefGoogle Scholar
  108. 108.
    Zacharowski K, Zacharowski P, Reingruber S, Petzelbauer P (2006) Fibrin(ogen) and its fragments in the pathophysiology and treatment of myocardial infarction. J Mol Med 84(6):469–477PubMedCrossRefGoogle Scholar
  109. 109.
    Duperray A, Languino LR, Plescia J, McDowall A, Hogg N, Craig AG, Berendt AR, Altieri DC (1997) Molecular identification of a novel fibrinogen binding site on the first domain of ICAM-1 regulating leukocyte-endothelium bridging. J Biol Chem 272(1):435–441PubMedCrossRefGoogle Scholar
  110. 110.
    Languino LR, Plescia J, Duperray A, Brian AA, Plow EF, Geltosky JE, Altieri DC (1993) Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell 73(7):1423–1434PubMedCrossRefGoogle Scholar
  111. 111.
    Languino LR, Duperray A, Joganic KJ, Fornaro M, Thornton GB, Altieri DC (1995) Regulation of leukocyte–endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc Natl Acad Sci USA 92(5):1505–1509PubMedCrossRefGoogle Scholar
  112. 112.
    Gorlatov S, Medved L (2002) Interaction of fibrin(ogen) with the endothelial cell receptor VE-cadherin: mapping of the receptor-binding site in the NH2-terminal portions of the fibrin beta chains. Biochemistry 41(12):4107–4116PubMedCrossRefGoogle Scholar
  113. 113.
    Petzelbauer P, Zacharowski PA, Miyazaki Y, Friedl P, Wickenhauser G, Castellino FJ, Groger M, Wolff K, Zacharowski K (2005) The fibrin-derived peptide Bbeta15–42 protects the myocardium against ischemia–reperfusion injury. Nat Med 11(3):298–304PubMedCrossRefGoogle Scholar
  114. 114.
    Zacharowski K, Zacharowski PA, Friedl P, Mastan P, Koch A, Boehm O, Rother RP, Reingruber S, Henning R, Emeis JJ, Petzelbauer P (2007) The effects of the fibrin-derived peptide Bbeta(15–42) in acute and chronic rodent models of myocardial ischemia–reperfusion. Shock 27(6):631–637PubMedCrossRefGoogle Scholar
  115. 115.
    Roesner JP, Petzelbauer P, Koch A, Mersmann J, Zacharowski PA, Boehm O, Reingruber S, Pasteiner W, Mascher D, Wolzt M, Barthuber C, Noldge-Schomburg GE, Scheeren TW, Zacharowski K (2007) The fibrin-derived peptide Bbeta15–42 is cardioprotective in a pig model of myocardial ischemia–reperfusion injury. Crit Care Med 35(7):1730–1735PubMedCrossRefGoogle Scholar
  116. 116.
    Wiedemann D, Schneeberger S, Friedl P, Zacharowski K, Wick N, Boesch F, Margreiter R, Laufer G, Petzelbauer P, Semsroth S (2010) The fibrin-derived peptide Bbeta(15–42) significantly attenuates ischemia–reperfusion injury in a cardiac transplant model. Transplantation 89(7):824–829PubMedCrossRefGoogle Scholar
  117. 117.
    Roesner JP, Petzelbauer P, Koch A, Tran N, Iber T, Vagts DA, Scheeren TW, Vollmar B, Noldge-Schomburg GE, Zacharowski K (2009) Bbeta15–42 (FX06) reduces pulmonary, myocardial, liver, and small intestine damage in a pig model of hemorrhagic shock and reperfusion. Crit Care Med 37(2):598–605PubMedCrossRefGoogle Scholar
  118. 118.
    Kakafika AI, Liberopoulos EN, Mikhailidis DP (2007) Fibrinogen: a predictor of vascular disease. Curr Pharm Des 13(16):1647–1659PubMedCrossRefGoogle Scholar
  119. 119.
    Lee DM, Weinblatt ME (2001) Rheumatoid arthritis. Lancet 358(9285):903–911PubMedCrossRefGoogle Scholar
  120. 120.
    Ingegnoli F, Fantini F, Favalli EG, Soldi A, Griffini S, Galbiati V, Meroni PL, Cugno M (2008) Inflammatory and prothrombotic biomarkers in patients with rheumatoid arthritis: effects of tumor necrosis factor-alpha blockade. J Autoimmun 31(2):175–179PubMedCrossRefGoogle Scholar
  121. 121.
    So AK, Varisco PA, Kemkes-Matthes B, Herkenne-Morard C, Chobaz-Peclat V, Gerster JC, Busso N (2003) Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J Thromb Haemost 1(12):2510–2515PubMedCrossRefGoogle Scholar
  122. 122.
    Weinberg JB, Pippen AM, Greenberg CS (1991) Extravascular fibrin formation and dissolution in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 34(8):996–1005PubMedCrossRefGoogle Scholar
  123. 123.
    Sanchez-Pernaute O, Lopez-Armada MJ, Calvo E, Diez-Ortego I, Largo R, Egido J, Herrero-Beaumont G (2003) Fibrin generated in the synovial fluid activates intimal cells from their apical surface: a sequential morphological study in antigen-induced arthritis. Rheumatology (Oxford) 42(1):19–25CrossRefGoogle Scholar
  124. 124.
    Liu X, Piela-Smith TH (2000) Fibrin(ogen)-induced expression of ICAM-1 and chemokines in human synovial fibroblasts. J Immunol 165(9):5255–5261PubMedGoogle Scholar
  125. 125.
    Varisco PA, Peclat V, van Ness K, Bischof-Delaloye A, So A, Busso N (2000) Effect of thrombin inhibition on synovial inflammation in antigen induced arthritis. Ann Rheum Dis 59(10):781–787PubMedCrossRefGoogle Scholar
  126. 126.
    Marty I, Peclat V, Kirdaite G, Salvi R, So A, Busso N (2001) Amelioration of collagen-induced arthritis by thrombin inhibition. J Clin Invest 107(5):631–640PubMedCrossRefGoogle Scholar
  127. 127.
    Raghu H, Flick MJ (2011) Targeting the coagulation factor fibrinogen for arthritis therapy. Curr Pharm Biotechnol (in press)Google Scholar
  128. 128.
    Wegner N, Lundberg K, Kinloch A, Fisher B, Malmstrom V, Feldmann M, Venables PJ (2010) Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol Rev 233(1):34–54PubMedCrossRefGoogle Scholar
  129. 129.
    Vossenaar ER, Nijenhuis S, Helsen MM, van der Heijden A, Senshu T, van den Berg WB, van Venrooij WJ, Joosten LA (2003) Citrullination of synovial proteins in murine models of rheumatoid arthritis. Arthritis Rheum 48(9):2489–2500PubMedCrossRefGoogle Scholar
  130. 130.
    Takizawa Y, Suzuki A, Sawada T, Ohsaka M, Inoue T, Yamada R, Yamamoto K (2006) Citrullinated fibrinogen detected as a soluble citrullinated autoantigen in rheumatoid arthritis synovial fluids. Ann Rheum Dis 65(8):1013–1020PubMedCrossRefGoogle Scholar
  131. 131.
    Hill JA, Al-Bishri J, Gladman DD, Cairns E, Bell DA (2006) Serum autoantibodies that bind citrullinated fibrinogen are frequently found in patients with rheumatoid arthritis. J Rheumatol 33(11):2115–2119PubMedGoogle Scholar
  132. 132.
    Snir O, Widhe M, Hermansson M, von Spee C, Lindberg J, Hensen S, Lundberg K, Engstrom A, Venables PJ, Toes RE, Holmdahl R, Klareskog L, Malmstrom V (2010) Antibodies to several citrullinated antigens are enriched in the joints of rheumatoid arthritis patients. Arthritis Rheum 62(1):44–52PubMedCrossRefGoogle Scholar
  133. 133.
    Hill JA, Bell DA, Brintnell W, Yue D, Wehrli B, Jevnikar AM, Lee DM, Hueber W, Robinson WH, Cairns E (2008) Arthritis induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice. J Exp Med 205(4):967–979PubMedCrossRefGoogle Scholar
  134. 134.
    Kuhn KA, Kulik L, Tomooka B, Braschler KJ, Arend WP, Robinson WH, Holers VM (2006) Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest 116(4):961–973PubMedCrossRefGoogle Scholar
  135. 135.
    Ho PP, Lee LY, Zhao X, Tomooka BH, Paniagua RT, Sharpe O, BenBarak MJ, Chandra PE, Hueber W, Steinman L, Robinson WH (2010) Autoimmunity against fibrinogen mediates inflammatory arthritis in mice. J Immunol 184(1):379–390PubMedCrossRefGoogle Scholar
  136. 136.
    Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53PubMedCrossRefGoogle Scholar
  137. 137.
    Baeten KM, Akassoglou K (2011) Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol 71(11):1018–1039Google Scholar
  138. 138.
    Davalos D, Akassoglou K (2008) Imaging microglia in the central nervous system: past, present and future. In: Lane TE, Carson M, Bergmann C, Wyss-Coray T (eds) Central nervous system diseases and inflammation. Springer, USA, pp 45–57CrossRefGoogle Scholar
  139. 139.
    Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185PubMedCrossRefGoogle Scholar
  140. 140.
    Akassoglou K, Strickland S (2002) Nervous system pathology: the fibrin perspective. Biol Chem 383(1):37–45PubMedCrossRefGoogle Scholar
  141. 141.
    Preston E, Webster J, Small D (2001) Characteristics of sustained blood–brain barrier opening and tissue injury in a model for focal trauma in the rat. J Neurotrauma 18(1):83–92PubMedCrossRefGoogle Scholar
  142. 142.
    Schachtrup C, Lu P, Jones LL, Lee JK, Lu J, Sachs BD, Zheng B, Akassoglou K (2007) Fibrinogen inhibits neurite outgrowth via beta3 integrin-mediated phosphorylation of the EGF receptor. Proc Natl Acad Sci USA 104(28):11814–11819PubMedCrossRefGoogle Scholar
  143. 143.
    Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Margolis RU, Akassoglou K (2010) Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J Neurosci 30(17):5843–5854PubMedCrossRefGoogle Scholar
  144. 144.
    Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, Dunn RS, Vorhees CV, Wills-Karp M, Degen JL, Davis RJ, Mizushima N, Rakic P, Dardzinski BJ, Holland SK, Sharp FR, Kuan C-Y (2006) Cerebral ischemia–hypoxia induces intravascular coagulation and autophagy. Am J Pathol 169(2):566–583PubMedCrossRefGoogle Scholar
  145. 145.
    Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH (1999) Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci 11(10):3648–3658PubMedCrossRefGoogle Scholar
  146. 146.
    Akassoglou K, Yu WM, Akpinar P, Strickland S (2002) Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron 33(6):861–875PubMedCrossRefGoogle Scholar
  147. 147.
    Li MO, Flavell RA (2008) TGF-beta: a master of all T cell trades. Cell 134(3):392–404PubMedCrossRefGoogle Scholar
  148. 148.
    Yoshimura A, Wakabayashi Y, Mori T (2010) Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem 147(6):781–792PubMedCrossRefGoogle Scholar
  149. 149.
    Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA, Lee ME (2000) Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem 275(47):36653–36658PubMedCrossRefGoogle Scholar
  150. 150.
    Naiki Y, Michelsen KS, Zhang W, Chen S, Doherty TM, Arditi M (2005) Transforming growth factor-beta differentially inhibits MyD88-dependent, but not TRAM- and TRIF-dependent, lipopolysaccharide-induced TLR4 signaling. J Biol Chem 280(7):5491–5495PubMedCrossRefGoogle Scholar
  151. 151.
    Murray V, Norrving B, Sandercock PA, Terent A, Wardlaw JM, Wester P (2010) The molecular basis of thrombolysis and its clinical application in stroke. J Intern Med 267(2):191–208PubMedCrossRefGoogle Scholar
  152. 152.
    Alexandrov AV (2010) Current and future recanalization strategies for acute ischemic stroke. J Intern Med 267(2):209–219PubMedCrossRefGoogle Scholar
  153. 153.
    Diamond SL (1999) Engineering design of optimal strategies for blood clot dissolution. Annu Rev Biomed Eng 1:427–462PubMedCrossRefGoogle Scholar
  154. 154.
    Lam CK, Yoo T, Hiner B, Liu Z, Grutzendler J (2010) Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature 465(7297):478–482PubMedCrossRefGoogle Scholar
  155. 155.
    Wang X, Lo EH (2003) Triggers and mediators of hemorrhagic transformation in cerebral ischemia. Mol Neurobiol 28(3):229–244PubMedCrossRefGoogle Scholar
  156. 156.
    Okada Y, Copeland BR, Fitridge R, Koziol JA, del Zoppo GJ (1994) Fibrin contributes to microvascular obstructions and parenchymal changes during early focal cerebral ischemia and reperfusion. Stroke 25(9):1847–1853, discussion 1853–1844PubMedCrossRefGoogle Scholar
  157. 157.
    Ninomia T, Wang L, Kumar SR, Kim A, Zlokovic BV (2000) Brain injury and cerebrovascular fibrin deposition correlate with reduced antithrombotic brain capillary functions in a hypertensive stroke model. J Cereb Blood Flow Metab 20(6):998–1009PubMedCrossRefGoogle Scholar
  158. 158.
    Baumann E, Preston E, Slinn J, Stanimirovic D (2009) Post-ischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and SPARC, and the blood-brain barrier disruption after global cerebral ischemia. Brain Res 1269:185–197PubMedCrossRefGoogle Scholar
  159. 159.
    Lassmann H (2005) Multiple sclerosis pathology: evolution of pathogenetic concepts. Brain Pathol 15(3):217–222PubMedCrossRefGoogle Scholar
  160. 160.
    Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7(3):115–121PubMedCrossRefGoogle Scholar
  161. 161.
    Lucchinetti CF, Brueck W, Rodriguez M, Lassmann H (1998) Multiple sclerosis: lessons from neuropathology. Semin Neurol 18(3):337–349PubMedCrossRefGoogle Scholar
  162. 162.
    Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DP, Moseley IF, Rudge P, McDonald WI (1990) Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113(Pt 5):1477–1489PubMedCrossRefGoogle Scholar
  163. 163.
    Kwon EE, Prineas JW (1994) Blood-brain barrier abnormalities in longstanding multiple sclerosis lesions. An immunohistochemical study. J Neuropathol Exp Neurol 53(6):625–636PubMedCrossRefGoogle Scholar
  164. 164.
    Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451(7182):1076–1081PubMedCrossRefGoogle Scholar
  165. 165.
    Akassoglou K, Adams RA, Bauer J, Mercado P, Tseveleki V, Lassmann H, Probert L, Strickland S (2004) Fibrin depletion decreases inflammation and delays the onset of demyelination in a tumor necrosis factor transgenic mouse model for multiple sclerosis. Proc Natl Acad Sci USA 101(17):6698–6703PubMedCrossRefGoogle Scholar
  166. 166.
    Paterson PY (1976) Experimental allergic encephalomyelitis: role of fibrin deposition in immunopathogenesis of inflammation in rats. Fed Proc 35(13):2428–2434PubMedGoogle Scholar
  167. 167.
    Inoue A, Koh CS, Shimada K, Yanagisawa N, Yoshimura K (1996) Suppression of cell-transferred experimental autoimmune encephalomyelitis in defibrinated Lewis rats. J Neuroimmunol 71(1–2):131–137PubMedCrossRefGoogle Scholar
  168. 168.
    Akassoglou K, Bauer J, Kassiotis G, Pasparakis M, Lassmann H, Kollias G, Probert L (1998) Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am J Pathol 153(3):801–813PubMedCrossRefGoogle Scholar
  169. 169.
    Probert L, Akassoglou K, Pasparakis M, Kontogeorgos G, Kollias G (1995) Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha. Proc Natl Acad Sci USA 92(24):11294–11298PubMedCrossRefGoogle Scholar
  170. 170.
    Wakefield AJ, More LJ, Difford J, McLaughlin JE (1994) Immunohistochemical study of vascular injury in acute multiple sclerosis. J Clin Pathol 47(2):129–133PubMedCrossRefGoogle Scholar
  171. 171.
    Gay FW, Drye TJ, Dick GW, Esiri MM (1997) The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain 120(Pt 8):1461–1483PubMedCrossRefGoogle Scholar
  172. 172.
    Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130(Pt 11):2800–2815PubMedCrossRefGoogle Scholar
  173. 173.
    Vos CM, Geurts JJ, Montagne L, van Haastert ES, Bo L, van der Valk P, Barkhof F, de Vries HE (2005) Blood–brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol Dis 20(3):953–960PubMedCrossRefGoogle Scholar
  174. 174.
    Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318PubMedCrossRefGoogle Scholar
  175. 175.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758PubMedCrossRefGoogle Scholar
  176. 176.
    Saido TC, Iwata N (2006) Metabolism of amyloid beta peptide and pathogenesis of Alzheimer’s disease. Towards presymptomatic diagnosis, prevention and therapy. Neurosci Res 54(4):235–253PubMedCrossRefGoogle Scholar
  177. 177.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMedCrossRefGoogle Scholar
  178. 178.
    Hardy J, Cullen K (2006) Amyloid at the blood vessel wall. Nat Med 12(7):756–757PubMedCrossRefGoogle Scholar
  179. 179.
    Biffi A, Greenberg SM (2011) Cerebral amyloid angiopathy: a systematic review. J Clin Neurol 7(1):1–9PubMedCrossRefGoogle Scholar
  180. 180.
    Altman R, Rutledge JC (2010) The vascular contribution to Alzheimer’s disease. Clin Sci (Lond) 119(10):407–421CrossRefGoogle Scholar
  181. 181.
    Kalaria RN (1999) The blood–brain barrier and cerebrovascular pathology in Alzheimer’s disease. Ann N Y Acad Sci 893:113–125PubMedCrossRefGoogle Scholar
  182. 182.
    Bowman GL, Kaye JA, Moore M, Waichunas D, Carlson NE, Quinn JF (2007) Blood–brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology 68(21):1809–1814PubMedCrossRefGoogle Scholar
  183. 183.
    Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118(1):103–113PubMedCrossRefGoogle Scholar
  184. 184.
    Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, Vitek MP, Hovanesian V, Stopa EG (2007) Microvascular injury and blood–brain barrier leakage in Alzheimer’s disease. Neurobiol Aging 28(7):977–986PubMedCrossRefGoogle Scholar
  185. 185.
    Ujiie M, Dickstein DL, Carlow DA, Jefferies WA (2003) Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 10(6):463–470PubMedGoogle Scholar
  186. 186.
    Kumar-Singh S, Pirici D, McGowan E, Serneels S, Ceuterick C, Hardy J, Duff K, Dickson D, Van Broeckhoven C (2005) Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am J Pathol 167(2):527–543PubMedCrossRefGoogle Scholar
  187. 187.
    Paul J, Strickland S, Melchor JP (2007) Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer’s disease. J Exp Med 204(8):1999–2008PubMedCrossRefGoogle Scholar
  188. 188.
    Ryu JK, McLarnon JG (2008) A leaky blood–brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 13:2911–2925PubMedCrossRefGoogle Scholar
  189. 189.
    van Oijen M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM (2005) Fibrinogen is associated with an increased risk of Alzheimer disease and vascular dementia. Stroke 36(12):2637–2641PubMedCrossRefGoogle Scholar
  190. 190.
    Xu G, Zhang H, Zhang S, Fan X, Liu X (2008) Plasma fibrinogen is associated with cognitive decline and risk for dementia in patients with mild cognitive impairment. Int J Clin Pract 62(7):1070–1075PubMedCrossRefGoogle Scholar
  191. 191.
    Fiala M, Liu QN, Sayre J, Pop V, Brahmandam V, Graves MC, Vinters HV (2002) Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood–brain barrier. Eur J Clin Invest 32(5):360–371PubMedCrossRefGoogle Scholar
  192. 192.
    Cortes-Canteli M, Paul J, Norris EH, Bronstein R, Ahn HJ, Zamolodchikov D, Bhuvanendran S, Fenz KM, Strickland S (2010) Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer’s disease. Neuron 66(5):695–709PubMedCrossRefGoogle Scholar
  193. 193.
    Ahn HJ, Zamolodchikov D, Cortes-Canteli M, Norris EH, Glickman JF, Strickland S (2010) Alzheimer’s disease peptide beta-amyloid interacts with fibrinogen and induces its oligomerization. Proc Natl Acad Sci USA 107(50):21812–21817PubMedCrossRefGoogle Scholar
  194. 194.
    Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai LH (2010) Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci 30(45):14946–14954PubMedCrossRefGoogle Scholar
  195. 195.
    Struble RG, Ala T, Patrylo PR, Brewer GJ, Yan XX (2010) Is brain amyloid production a cause or a result of dementia of the Alzheimer’s type? J Alzheimers Dis 22(2):393–399PubMedGoogle Scholar
  196. 196.
    Cordonnier C, van der Flier WM (2011) Brain microbleeds and Alzheimer’s disease: innocent observation or key player? Brain 134(Pt 2):335–344PubMedCrossRefGoogle Scholar
  197. 197.
    Cortes-Canteli M, Strickland S (2009) Fibrinogen, a possible key player in Alzheimer’s disease. J Thromb Haemost 7(Suppl 1):146–150PubMedCrossRefGoogle Scholar
  198. 198.
    Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5(5):347–360PubMedCrossRefGoogle Scholar
  199. 199.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444PubMedCrossRefGoogle Scholar
  200. 200.
    Xie J, Itzkowitz SH (2008) Cancer in inflammatory bowel disease. World J Gastroenterol 14(3):378–389PubMedCrossRefGoogle Scholar
  201. 201.
    Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, Kiser JH, Degen JL, Bugge TH (2000) Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 96(10):3302–3309PubMedGoogle Scholar
  202. 202.
    Palumbo JS, Potter JM, Kaplan LS, Talmage K, Jackson DG, Degen JL (2002) Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res 62(23):6966–6972PubMedGoogle Scholar
  203. 203.
    Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Hu Z, Barney KA, Degen JL (2007) Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood 110(1):133–141PubMedCrossRefGoogle Scholar
  204. 204.
    Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Jirouskova M, Degen JL (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105(1):178–185PubMedCrossRefGoogle Scholar
  205. 205.
    Palumbo JS, Degen JL (2010) Mechanisms coupling the hemostatic system to colitis-associated cancer. Thromb Res 125(Suppl 2):S39–S43PubMedCrossRefGoogle Scholar
  206. 206.
    Palumbo JS, Degen JL (2007) Mechanisms linking tumor cell-associated procoagulant function to tumor metastasis. Thromb Res 120(Suppl 2):S22–S28PubMedCrossRefGoogle Scholar
  207. 207.
    Wilberding JA, Ploplis VA, McLennan L, Liang Z, Cornelissen I, Feldman M, Deford ME, Rosen ED, Castellino FJ (2001) Development of pulmonary fibrosis in fibrinogen-deficient mice. Ann N Y Acad Sci 936:542–548PubMedCrossRefGoogle Scholar
  208. 208.
    Ploplis VA, Wilberding J, McLennan L, Liang Z, Cornelissen I, DeFord ME, Rosen ED, Castellino FJ (2000) A total fibrinogen deficiency is compatible with the development of pulmonary fibrosis in mice. Am J Pathol 157(3):703–708PubMedCrossRefGoogle Scholar
  209. 209.
    Drew AF, Tucker HL, Liu H, Witte DP, Degen JL, Tipping PG (2001) Crescentic glomerulonephritis is diminished in fibrinogen-deficient mice. Am J Physiol Renal Physiol 281(6):F1157–F1163PubMedGoogle Scholar
  210. 210.
    Cruz-Topete D, Iwaki T, Ploplis VA, Castellino FJ (2006) Delayed inflammatory responses to endotoxin in fibrinogen-deficient mice. J Pathol 210(3):325–333PubMedCrossRefGoogle Scholar
  211. 211.
    Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB, Konrad I, Kennerknecht E, Reges K, Holdenrieder S, Braun S, Reinhardt C, Spannagl M, Preissner KT, Engelmann B (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16(8):887–896PubMedCrossRefGoogle Scholar
  212. 212.
    Macheboeuf P, Buffalo C, Fu CY, Zinkernagel AS, Cole JN, Johnson JE, Nizet V, Ghosh P (2011) Streptococcal M1 protein constructs a pathological host fibrinogen network. Nature 472(7341):64–68PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Gladstone Institute of Neurological DiseaseUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of NeurologyUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations