Cancer Chemotherapy and Pharmacology

, Volume 79, Issue 5, pp 971–983 | Cite as

Computed determination of the in vitro optimal chemocombinations of sphaeropsidin A with chemotherapeutic agents to combat melanomas

  • Aude Ingels
  • Carina Dinhof
  • Abhishek D. Garg
  • Lucia Maddau
  • Marco Masi
  • Antonio Evidente
  • Walter Berger
  • Bieke Dejaegher
  • Véronique MathieuEmail author
Original Article



Evasion to new treatments of advanced melanoma is still associated with a poor prognosis. Choosing the best combination of agents that can bypass resistance mechanisms remains a challenge. Sphaeropsidin A (Sph A) is a fungal bioactive secondary metabolite previously shown to force melanoma cells to undergo apoptosis via cell volume dysregulation. This work studied its in vitro combination with cytotoxic chemotherapeutics in a rational manner.


Four melanoma cell lines harboring different sensitivity levels to pro-apoptotic stimuli were used to build a predictive response surface model allowing the determination of the optimal in vitro combinations of Sph A with two drugs, i.e., cisplatin or temozolomide, owing to a limited set of experimentations.


Testing 12 experimental combinations allowed us to build an accurate predictive model that considers the complexity of the drug interaction and determines the optimal combinations according to the endpoint chosen, i.e., the maximal cytotoxic effects. Therefore, combining 4 µM Sph A with 75 µM cisplatin concomitantly for 72 h improved its cytotoxic effects on melanoma cells in a synergistic manner. An optimal in vitro treatment schedule was also obtained for temozolomide.


The use of a response surface model offers the possibility of reducing the experiments while determining accurately the optimal combinations. We herein highlighted that combining the Na+/K+/2Cl cotransporter and/or anion exchanger inhibitor Sph A with chemotherapeutic agents could improve the therapeutic benefits of conventional chemotherapies against advanced melanomas, particularly because Sph A exerts cytotoxic effects regardless of the genetic BRAF and NRAS status.


Melanoma Apoptosis Combination therapy Sphaeropsidin A Cisplatin Temozolomide 



Absorption, distribution, metabolism, and excretion


Area under the curve




Maximum (or peak) serum concentration


Cytotoxic T lymphocyte antigen-4




Ethylenediaminetetraacetic acid


Growth inhibition 50%




Lethal concentration 50/90


Multi-criteria decision-making


Multidrug resistance




3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide


National cancer institute


Na+–K+–2Cl co-transporters ½


Phosphate buffered saline


Programmed cell death protein 1


Progression-free survival


Regulatory volume increase

Sph A

Sphaeropsidin A





We thank Robert Kiss for his advice in the current project and particularly for having initiated it as well as for reviewing the present manuscript. ADG is a postdoctoral fellow of the FWO-Vlaanderen, Belgium.


No private or public grant supported this work that was conducted with academic financial support only.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

280_2017_3293_MOESM1_ESM.docx (84 kb)
Supplementary material 1 (DOCX 84 KB)


  1. 1.
    Long GV, Weber JS, Infante JR et al (2016) Overall survival and durable responses in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib combined with trametinib. J Clin Oncol 34(8):871–878. doi: 10.1200/JCO.2015.62.9345 CrossRefPubMedGoogle Scholar
  2. 2.
    Long GV, Stroyakovskiy D, Gogas H et al (2014) Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 371:1877–1888. doi: 10.1056/NEJMoa1406037 CrossRefPubMedGoogle Scholar
  3. 3.
    Welsh SJ, Rizos H, Scolyer RA, Long GV (2016) Resistance to combination BRAF and MEK inhibition in metastatic melanoma: where to next? Eur J Cancer 62:76–85. doi: 10.1016/j.ejca.2016.04.005 CrossRefPubMedGoogle Scholar
  4. 4.
    Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenic in melanoma with BRAF V600E mutation. N Eng J Med 364:2507–2516. doi: 10.1056/NEJMoa1103782.Improved CrossRefGoogle Scholar
  5. 5.
    Hauschild A, Grob JJ, Demidov LV et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365. doi: 10.1016/S0140-6736(12)60868-X CrossRefPubMedGoogle Scholar
  6. 6.
    Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34. doi: 10.1056/NEJMoa1504030 CrossRefPubMedGoogle Scholar
  7. 7.
    Harries M, Malvehy J, Lebbe C et al (2016) Treatment patterns of advanced malignant melanoma (stage III–IV) – a review of current standards in Europe. Eur J Cancer 60:179–189. doi: 10.1016/j.ejca.2016.01.011 CrossRefPubMedGoogle Scholar
  8. 8.
    Grazia G, Penna I, Perotti V et al (2014) Towards combinatorial targeted therapy in melanoma: from pre-clinical evidence to clinical application (review). Int J Oncol 45:929–949. doi: 10.3892/ijo.2014.2491 PubMedPubMedCentralGoogle Scholar
  9. 9.
    Charles EM, Rehm M (2014) Key regulators of apoptosis execution as biomarker candidates in melanoma. Mol Cell Oncol 1:37–41. doi: 10.4161/23723548.2014.964037 Google Scholar
  10. 10.
    Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 0:364–378. doi: 10.1016/j.ejphar.2014.07.025.Cisplatin CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Quirt I, Verma S, Petrella T et al (2007) Temozolomide for the treatment of metastatic melanoma: a systematic review. Oncologist 12:1114–1123. doi: 10.1634/theoncologist.12-9-1114 CrossRefPubMedGoogle Scholar
  12. 12.
    Roos WP, Quiros S, Krumm A et al (2014) B-Raf inhibitor vemurafenib in combination with temozolomide and fotemustine in the killing response of malignant melanoma cells. Oncotarget 5:12607–12620. doi: 10.18632/oncotarget.2610 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Knizhnik AV, Roos WP, Nikolova T et al (2013) Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One 8:1–12. doi: 10.1371/journal.pone.0055665 CrossRefGoogle Scholar
  14. 14.
    Sparapano L, Bruno G, Fierro O, Evidente A (2004) Studies on structure-activity relationship of sphaeropsidins A-F, phytotoxins produced by Sphaeropsis sapinea f. sp. cupressi. Phytochemistry 65:189–198. doi: 10.1016/j.phytochem.2003.11.006 CrossRefPubMedGoogle Scholar
  15. 15.
    Wang XN, Bashyal BP, Wijeratne EMK et al (2011) Smardaesidins A–G, isopimarane and 20 nor-isopimarane diterpenoids from Smardaea sp., a fungal endophyte of the moss Ceratodon purpureus. J Nat Prod 74:2052–2061. doi: 10.1021/np2000864 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mathieu V, Chantôme A, Lefranc F et al (2015) Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase. Cell Mol Life Sci 72:3731–3746. doi: 10.1007/s00018-015-1902-6 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Poulsen KA, Andersen EC, Hansen CF et al (2010) Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels. Am J Physiol Cell Physiol 298:C14–C25. doi: 10.1152/ajpcell.00459.2009 CrossRefPubMedGoogle Scholar
  18. 18.
    Hoffmann EK (2011) Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells. Cell Physiol Biochem 28:1061–1078. doi: 10.1159/000335843 CrossRefPubMedGoogle Scholar
  19. 19.
    Algharabli J, Kintner DB, Wang Q et al (2012) Inhibition of Na + Cell Physiol Biochem -K+ -2Cl–cotransporter isoform 1 accelerates temozolomide-mediated apoptosis in glioblastoma cancer cells. Cell Physiol Biochem 30:33–48. doi: 10.1038/nmeth.2250.Digestion CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Zhu W, Begum G, Pointer K et al (2014) WNK1-OSR1 kinase-mediated phospho-activation of Na+-K+-2Cl- cotransporter facilitates glioma migration. Mol Cancer 13:1–15. doi: 10.1186/1476-4598-13-31 CrossRefGoogle Scholar
  21. 21.
    Dejaegher B, Vander Heyden Y (2011) Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J Pharm Biomed Anal 56:141–158. doi: 10.1016/j.jpba.2011.04.023 CrossRefPubMedGoogle Scholar
  22. 22.
    Berger W, Hauptmann E, Elbling L et al (1997) Possible role of the multidrug resistance-associated protein (MRP) in chemoresistance of human melanoma cells. Int J cancer 71:108–115CrossRefPubMedGoogle Scholar
  23. 23.
    Birner P, Berghoff AS, Dinhof C et al (2014) MAP kinase activity supported by BRAF (V600E) mutation rather than gene amplification is associated with ETV1 expression in melanoma brain metastases. Arch Dermatol Res 306:873–884. doi: 10.1007/s00403-014-1490-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Evidente A, Sparapano L, Fierro O et al (1997) Sphaeropsidins B and C, phytotoxic pimarane diterpenes from Sphaeropsis sapinea f. sp. cupressi and Diplodia mutila. Phytochemistry 45:705–713. doi: 10.1016/S0031-9422(97)00006-X CrossRefGoogle Scholar
  25. 25.
    Heffeter P, Jakupec MA, Körner W et al (2007) Multidrug-resistant cancer cells are preferential targets of the new antineoplastic lanthanum compound KP772 (FFC24). Biochem Pharmacol 73:1873–1886. doi: 10.1016/j.bcp.2007.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mathieu V, Pirker C, Schmidt WM et al (2012) Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation. Oncotarget 3:399–413 doi:não achei CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mathieu V, Pirker C, Martin de Lassalle E et al (2009) The sodium pump alpha1 sub-unit: A disease progression-related target for metastatic melanoma treatment. J Cell Mol Med 13:3960–3972. doi: 10.1111/j.1582-4934.2009.00708.x CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Melnikova VO, Bolshakov SV, Walker C, Ananthaswamy HN (2004) Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene 23:2347–2356. doi: 10.1038/sj.onc.1207405 CrossRefPubMedGoogle Scholar
  29. 29.
    Naumann SC, Roos WP, Jöst E et al (2009) Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53. Br J Cancer 100:322–233. doi: 10.1038/sj.bjc.6604856 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li W, Melton D (2012) Cisplatin regulates the MAPK kinase pathway to induce increased expression of DNA repair gene ERCC1 and increase melanoma chemoresistance. Oncogene 31:2412–2422. doi: 10.1038/onc.2011.426 CrossRefPubMedGoogle Scholar
  31. 31.
    Chen Y-P, Hou X-Y, Yang C-S et al (2016) DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines. Tumor Biol. doi: 10.1007/s13277-016-4994-1 Google Scholar
  32. 32.
    Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219. doi: 10.2116/analsci.22.955 Google Scholar
  33. 33.
    Tanami H, Imoto I, Hirasawa A et al (2004) Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines. Oncogene 23:8796–8804. doi: 10.1038/sj.onc.1208152 CrossRefPubMedGoogle Scholar
  34. 34.
    Clarke R (1997) Issues in experimental design and endpoint analysis in the study of experimental cytotoxic agents in vivo in breast cancer and other models. Breast Cancer Res Treat 46:255–278. doi: 10.1023/A:1005938428456 CrossRefPubMedGoogle Scholar
  35. 35.
    Garg AD, Vandenberk L, Koks C et al (2016) Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med 8:328ra327. doi: 10.1126/scitranslmed.aae0105 CrossRefGoogle Scholar
  36. 36.
    Sullivan RJ, Flaherty KT (2013) Resistance to BRAF-targeted therapy in melanoma. Eur J Cancer 49:1297–1304. doi: 10.1016/j.ejca.2012.11.019 CrossRefPubMedGoogle Scholar
  37. 37.
    Dejaegher B, Vander Heyden Y (2009) The use of experimental design in separation science. Acta Chromatogr 21:161–201. doi: 10.1556/AChrom.21.2009.2.1 CrossRefGoogle Scholar
  38. 38.
    Candioti LV, De Zan MM, Cámara MS, Goicoechea HC (2014) Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124:123–138. doi: 10.1016/j.talanta.2014.01.034 CrossRefPubMedGoogle Scholar
  39. 39.
    Witek-Krowiak A, Chojnacka K, Podstawczyk D et al (2014) Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour Technol 160:150–160. doi: 10.1016/j.biortech.2014.01.021 CrossRefPubMedGoogle Scholar
  40. 40.
    Ikeda K, Terashima M, Kawamura H et al (1998) Pharmacokinetics of cisplatin in combined cisplatin and 5-fluorouracil therapy: a comparative study of three different schedules of cisplatin administration. Jpn J Clin Oncol 28:168–175. doi: 10.1093/jjco/28.3.168 CrossRefPubMedGoogle Scholar
  41. 41.
    Yao Z, Torres NM, Tao A et al (2015) BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell 28:370–383. doi: 10.1016/j.ccell.2015.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Leonard R, Hennessy BT, Blum JL, O’Shaughnessy J (2011) Dose-adjusting capecitabine minimizes adverse effects while maintaining efficacy: A retrospective review of capecitabine for metastatic breast cancer. Clin Breast Cancer 11:349–356. doi: 10.1016/j.clbc.2011.06.005 CrossRefPubMedGoogle Scholar
  43. 43.
    Kakigi A, Nishimura M, Takeda T et al (2009) Expression of aquaporin1, 3, and 4, NKCC1, and NKCC2 in the human endolymphatic sac. Auris Nasus Larynx 36:135–139. doi: 10.1016/j.anl.2008.04.012 CrossRefPubMedGoogle Scholar
  44. 44.
    Orlov SN, Koltsova S V, Kapilevich L V et al (2015) NKCC1 and NKCC2: the pathogenetic role of cation-chloride cotransporters in hypertension. Genes Dis 2:186–196. doi: 10.1016/j.gendis.2015.02.007.NKCC1 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ali BH, Moundhri MS Al (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183. doi: 10.1016/j.fct.2006.01.013 CrossRefPubMedGoogle Scholar
  46. 46.
    Sekine I, Yamada K, Nokihara H et al (2007) Bodyweight change during the first 5 days of chemotherapy as an indicator of cisplatin renal toxicity. Cancer Sci 98:1408–1412. doi: 10.1111/j.1349-7006.2007.00532.x CrossRefPubMedGoogle Scholar
  47. 47.
    Lajer H, Kristensen M, Hansen HH et al (2005) Magnesium depletion enhances cisplatin-induced nephrotoxicity. Cancer Chemother Pharmacol 56:535–542. doi: 10.1007/s00280-005-1010-7 CrossRefPubMedGoogle Scholar
  48. 48.
    Li Xia, Chen Z, Su K et al (2014) Comparison of cochlear cell death caused by cisplatin, alone and in combination with furosemide. Toxicol Pathol 42:376–385. doi: 10.1177/0192623313483213.Comparison CrossRefPubMedGoogle Scholar
  49. 49.
    Ding D, Jiang H, Wang P, Salvi R (2007) Cell death after co-administration of cisplatin and ethacrynic acid. Hear Res 226:129–139. doi: 10.1016/j.heares.2006.07.015 CrossRefPubMedGoogle Scholar
  50. 50.
    Jaggi AS, Kaur A, Bali A, Singh N (2015) Expanding spectrum of sodium potassium chloride co-transporters in the pathophysiology of diseases. Curr Neuropharmacol 13:369–388CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Huang C, Zheng M, Yang Z et al (2008) Projection of exposure and efficacious dose prior to first-in-human studies: how successful have we been? Pharm Res 25:713–726. doi: 10.1007/s11095-007-9411-4 CrossRefPubMedGoogle Scholar
  52. 52.
    Lallemand B, Masi M, Maddau L et al (2012) Evaluation of in vitro anticancer activity of sphaeropsidins A-C, fungal rearranged pimarane diterpenes, and semisynthetic derivatives. Phytochem Lett 5:770–775. doi: 10.1016/j.phytol.2012.08.011 CrossRefGoogle Scholar
  53. 53.
    Rahman A, Treat J, Roh J et al (1990) A phase I clinical trial and pharmacokinetic evaluation of liposome-encapsulated doxorubicin. J Clin Oncol 8:1093–1100CrossRefPubMedGoogle Scholar
  54. 54.
    Gardner ER, Dahut WL, Scripture CD et al (2008) Randomized crossover pharmacokinetic study of solvent-based paclitaxel and nab-paclitaxel. Clin Cancer Res 14:4200–4205. doi: 10.1158/1078-0432.CCR-07-4592.Randomized CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Aude Ingels
    • 1
  • Carina Dinhof
    • 2
    • 3
  • Abhishek D. Garg
    • 4
  • Lucia Maddau
    • 5
  • Marco Masi
    • 6
  • Antonio Evidente
    • 6
  • Walter Berger
    • 2
    • 3
  • Bieke Dejaegher
    • 7
  • Véronique Mathieu
    • 1
    Email author
  1. 1.Laboratoire de Cancérologie et Toxicologie ExpérimentaleUniversité Libre de BruxellesIxellesBelgium
  2. 2.Department of Medicine I, Institute of Cancer ResearchMedical University ViennaViennaAustria
  3. 3.Comprehensive Cancer CenterMedical University ViennaViennaAustria
  4. 4.Laboratory for Cell Death Research and Therapy (CDRT), Department of Cellular and Molecular MedicineKU Leuven UniversityLeuvenBelgium
  5. 5.Dipartimento di Agraria, Sezione di Patologia vegetale ed EntomologiaUniversità degli Studi di SassariSassariItaly
  6. 6.Dipartimento di Scienze ChimicheUniversita’ di Napoli Federico IINapoliItaly
  7. 7.Laboratoire d’Analyse Instrumentale et de BioélectrochimieUniversité Libre de BruxellesIxellesBelgium

Personalised recommendations