Skip to main content

Advertisement

Log in

Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 µM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl and the decreased HCO3 concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na–K–2Cl electroneutral cotransporter or Cl/HCO3 anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Buti S, Bersanelli M, Sikokis A, Maines F, Facchinetti F, Bria E, Ardizzoni A, Tortora G, Massari F (2013) Chemotherapy in metastatic renal cell carcinoma today? A systematic review. Anticancer Drugs 24:535–554

    CAS  PubMed  Google Scholar 

  2. Luke JJ, Schwartz GK (2013) Chemotherapy in the management of advanced cutaneous malignant melanoma. Clin Dermatol 31:290–297

    Article  PubMed Central  PubMed  Google Scholar 

  3. Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM (2011) Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist 16:5–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sullivan RJ, Flaherty KT (2014) Major therapeutic developments and current challenges in advanced melanoma. Br J Dermatol 170:36–44

    Article  CAS  PubMed  Google Scholar 

  5. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA (2011) BRIM-3 Study Group. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH Jr, Kaempgen E, Martín-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan RJ, Flaherty KT (2013) Resistance to BRAF-targeted therapy in melanoma. Eur J Cancer 49:1297–1304

    Article  CAS  PubMed  Google Scholar 

  8. Iacovelli R, Alesini D, Palazzo A, Trenta P, Santoni M, De Marchis L, Cascinu S, Naso G, Cortesi E (2014) Targeted therapies and complete responses in first line treatment of metastatic renal cell carcinoma. A meta-analysis of published trials. Cancer Treat Rev 40:271–275

    Article  CAS  PubMed  Google Scholar 

  9. Porta C, Sabbatini R, Procopio G, Paglino C, Galligioni E, Ortega C (2012) Primary resistance to tyrosine kinase inhibitors in patients with advanced renal cell carcinoma: state-of-the-science. Expert Rev Anticancer Ther 12:1571–1577

    Article  CAS  PubMed  Google Scholar 

  10. Ravaud A, Gross-Goupil M (2012) Overcoming resistance to tyrosine kinase inhibitors in renal cell carcinoma. Cancer Treat Rev 38:996–1003

    Article  CAS  PubMed  Google Scholar 

  11. Calvo E, Ravaud A, Bellmunt J (2013) What is the optimal therapy for patients with metastatic renal cell carcinoma who progress on an initial VEGFr-TKI? Cancer Treat Rev 39:366–374

    Article  CAS  PubMed  Google Scholar 

  12. Figlin RA, Kaufmann I, Brechbiel J (2013) Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: new strategies for overcoming resistance to VEGFR and mTORC1 inhibitors. Int J Cancer 133:788–796

    Article  CAS  PubMed  Google Scholar 

  13. Cuddapah VA, Sontheimer H (2011) Ion channels and transporters in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol 301:C541–C549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hoffmann EK, Lambert IH (2014) Ion channels and transporters in the development of drug resistance in cancer cells. Phil Trans R Soc B 369:20130109

    Article  PubMed Central  PubMed  Google Scholar 

  15. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    Article  CAS  PubMed  Google Scholar 

  18. Sparapano L, Bruno G, Fierro O, Evidente A (2004) Studies on structure-activity relationship of sphaeropsidins A-F, phytotoxins produced by Sphaeropsis sapinea f. sp. cupressi. Phytochemistry 65:189–198

    Article  CAS  PubMed  Google Scholar 

  19. Andolfi A, Maddau L, Basso S, Linaldeddu BT, Cimmino A, Scanu B, Deidda A, Tuzi A, Evidente A (2014) Diplopimarane, a 20-nor-ent-pimarane produced by the oak pathogen Diplodia quercivora. J Nat Prod 77:2352–2360

    Article  CAS  PubMed  Google Scholar 

  20. Weber RW, Kappe R, Paululat T, Mösker E, Anke H (2007) Anti-Candida metabolites from endophytic fungi. Phytochemistry 68:886–8892

    Article  CAS  PubMed  Google Scholar 

  21. Wang XN, Bashyal BP, Wijeratne EM, U’Ren JM, Liu MX, Gunatilaka MK, Arnold AE, Gunatilaka AA (2011) Smardaesidins A-G, isopimarane and 20-nor-isopimarane diterpenoids from Smardaea sp., a fungal endophyte of the moss Ceratodon purpureus. J Nat Prod 74:2052–2061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lallemand B, Masi M, Maddau L, De Lorenzi M, Dam R, Cimmino A, Moreno y Banuls L, Andolfi A, Kiss R, Mathieu V, Evidente A (2012) Evaluation of in vitro anticancer activity of sphaeropsidins A-C, fungal rearranged pimarane diterpenes, and semisynthetic derivatives. Phytochem Lett 5:770–775

    Article  CAS  Google Scholar 

  23. Mathieu V, Le Mercier M, De Neve N, Sauvage S, Gras T, Roland I, Lefranc F, Kiss R (2007) Galectin-1 knockdown increases sensitivity to temozolomide in a B16F10 mouse metastatic melanoma model. J Invest Dermatol 127:2399–2410

    Article  CAS  PubMed  Google Scholar 

  24. Chantome A, Girault A, Potier M, Collin C, Vaudin P, Pagès JC, Vandier C, Joulin V (2009) KCa2.3 channel-dependent hyperpolarization increases melanoma cell motility. Exp Cell Res 315:3620–3630

    Article  CAS  PubMed  Google Scholar 

  25. Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L, Plowman J, Boyd MR (1989) Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 81:1088–1092

    Article  CAS  PubMed  Google Scholar 

  26. Frédérick R, Bruyère C, Vancraeynest C, Reniers J, Meinguet C, Pochet L, Backlund A, Masereel B, Kiss R, Wouters J (2012) Novel trisubstituted harmine derivatives with original in vitro anticancer activity. J Med Chem 55:6489–6501

    Article  PubMed  Google Scholar 

  27. Mathieu V, Van Den Berge E, Ceusters J, Konopka T, Cops A, Bruyère C, Pirker C, Berger W, Trieu-Van T, Serteyn D, Kiss R, Robiette R (2013) New 5-aryl-1H-imidazoles display in vitro antitumor activity against apoptosis-resistant cancer models, including melanomas, through mitochondrial targeting. J Med Chem 56:6626–6637

    Article  CAS  PubMed  Google Scholar 

  28. Mijatovic T, Jungwirth U, Heffeter P, Hoda MA, Dornetshuber R, Kiss R, Berger W (2009) The Na+/K+-ATPase is the Achilles heel of multi-drug-resistant cancer cells. Cancer Lett 282:30–34

    Article  CAS  PubMed  Google Scholar 

  29. Remillard CV, Yuan JXJ (2004) Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 286:L49–L67

    Article  CAS  PubMed  Google Scholar 

  30. Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X, Takahashi N (2006) Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J Membr Biol 209:21–29

    Article  CAS  PubMed  Google Scholar 

  31. Okada Y, Maeno E (2001) Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comp Biochem Physiol A: Mol Integr Physiol 130:377–383

    Article  CAS  Google Scholar 

  32. Dezaki K, Maeno E, Sato K, Akita T, Okada Y (2012) Early-phase occurrence of K+ and Cl efflux in addition to Ca2+ mobilization is a prerequisite to apoptosis in HeLa cells. Apoptosis 17:821–831

    Article  CAS  PubMed  Google Scholar 

  33. O’Neill WC (1999) Physiological significance of volume-regulatory transporters. Am J Physiol 276:C995–C1011

    PubMed  Google Scholar 

  34. Delpire E, Staley KJ (2014) Novel determinants of the neuronal Cl concentration. J Physiol 592:4099–4114

    Article  CAS  PubMed  Google Scholar 

  35. Hoffmann EK (2011) Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells. Cell Physiol Biochem 28:1061–1078

    Article  CAS  PubMed  Google Scholar 

  36. Speers AG, Lwaleed BA, Featherstone JM, Sallis BJ, Cooper AJ (2006) Furosemide reverses multidrug resistance status in bladder cancer cells in vitro. J Clin Pathol 59:912–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Algharabil J, Kintner DB, Wang Q, Begum G, Clark PA, Yang SS, Lin SH, Kahle KT, Kuo JS, Sun D (2012) Inhibition of Na[+]-K[+]-2Cl[−] cotransporter isoform 1 accelerates temozolomide-mediated apoptosis in glioblastoma cancer cells. Cell Physiol Biochem 30:33–48

    Article  CAS  PubMed  Google Scholar 

  38. Delpire E, Austin TM (2010) Kinase regulation of Na+–K+–2Cl cotransport in primary afferent neurons. J Physiol 588:3365–3373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Karumanchi SA, Jiang L, Knebelmann B, Stuart-Tilley AK, Alper SL, Sukhatme VP (2001) VHL tumor suppressor regulates Cl/HCO3 exchange and Na+/H+ exchange activities in renal carcinoma cells. Physiol Genomics 5:119–128

    CAS  PubMed  Google Scholar 

  40. Lee AH, Tannock IF (1998) Heterogeneity of intracellular pH and of mechanisms that regulate intracellular pH in populations of cultured cells. Cancer Res 58:1901–1908

    CAS  PubMed  Google Scholar 

  41. Roepe PD, Wei LY, Cruz J, Carlson D (1993) Lower electrical membrane potential and altered pHi homeostasis in multidrug-resistant (MDR) cells: further characterization of a series of MDR cell lines expressing different levels of P-glycoprotein. Biochemistry 32:11042–11056

    Article  CAS  PubMed  Google Scholar 

  42. Roepe PD, Weisburg JH, Luz JG, Hoffman MM, Wei LY (1994) Novel Cl(−)-dependent intracellular pH regulation in murine MDR 1 transfectants and potential implications. Biochemistry 33:11008–11015

    Article  CAS  PubMed  Google Scholar 

  43. Luz JG, Wei LY, Basu S, Roepe PD (1994) Transfection of mu MDR 1 inhibits Na(+)-independent Cl/–HCO3 exchange in Chinese hamster ovary cells. Biochemistry 33:7239–7249

    Article  CAS  PubMed  Google Scholar 

  44. Poulsen KA, Andersen EC, Hansen CF, Klausen TK, Hougaard C, Lambert IH, Hoffmann EK (2010) Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels. Am J Physiol Cell Physiol 298:C14–C25

    Article  CAS  PubMed  Google Scholar 

  45. Liu CJ, Hwang JM, Wu TT, Hsieh YH, Wu CC, Hsieh YS, Tsai CH, Wu HC, Huang CY, Liu JY (2008) Anion exchanger inhibitor DIDS induces human poorly-differentiated malignant hepatocellular carcinoma HA22T cell apoptosis. Mol Cell Biochem 308:117–125

    Article  CAS  PubMed  Google Scholar 

  46. Hwang JM, Kao SH, Hsieh YH, Li KL, Wang PH, Hsu LS, Liu JY (2009) Reduction of anion exchanger 2 expression induces apoptosis of human hepatocellular carcinoma cells. Mol Cell Biochem 327:135–144

    Article  CAS  PubMed  Google Scholar 

  47. Malumbres R, Lecanda J, Melero S, Ciesielczyk P, Prieto J, Medina JF (2003) HNF1alpha upregulates the human AE2 anion exchanger gene (SLC4A2) from an alternate promoter. Biochem Biophys Res Commun 311:233–240

    Article  CAS  PubMed  Google Scholar 

  48. Pedersen SF, Hoffmann EK, Novak I (2013) Cell volume regulation in epithelial physiology and cancer. Front Physiol 4:233

    Article  PubMed Central  PubMed  Google Scholar 

  49. Haas BR, Sontheimer H (2010) Inhibition of the sodium-potassium-chloride cotransporter isoform-1 reduces glioma invasion. Cancer Res 70:5597–5606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zhu W, Begum G, Pointer K, Clark PA, Yang SS, Lin SH, Kahle KT, Kuo JS, Sun D (2014) WNK1-OSR1 kinase-mediated phospho-activation of Na+–K+–2Cl cotransporter facilitates glioma migration. Mol Cancer 13:31

    Article  PubMed Central  PubMed  Google Scholar 

  51. Haas BR, Cuddapah VA, Watkins S, Rohn KJ, Dy TE, Sontheimer H (2011) With-No-Lysine Kinase 3 (WNK3) stimulates glioma invasion by regulating cell volume. Am J Physiol Cell Physiol 301:C1150–C1160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Pogorevici A, Velciov SM, Secrii RV (2007) The molecular and physiopathological mechanisms involved in response reduction to chronic diuretics therapy. TMJ 57:58–67

    Google Scholar 

  53. De Los Heros P, Alessi DR, Gourlay R, Campbell DG, Deak M, Macartney TJ, Kahle KT, Zhang J (2014) The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+–Cl co-transporters. Biochem J 458:559–573

    Article  Google Scholar 

  54. Iserovich P, Qin Q, Petrukhin K (2011) DPOFA, a Cl/HCO3 exchanger antagonist, stimulates fluid absorption across basolateral surface of the retinal pigment epithelium. BMC Ophthalmol 11:33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Wilson MC, Meredith D, Bunnun C, Sessions RB, Halestrap AP (2009) Studies on the DIDS-binding site on monocarboxylate transporter 1 suggest a homology model of the open conformation and a plausible translocation cycle. J Biol Chem 284:20011–20021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

R.K. is a director of research with the Fonds National de la Recherche Scientifique (FRS-FNRS; Belgium). E.D. is supported by NIH grants GM74771 and DK93501. A.K. acknowledges National Cancer Institute (Grant CA186046-01A1). A.C. and C.V. acknowledge University of Tours, INSERM, the "Région Centre" of France (LIPIDS project of ARD2020 Biomédicaments), the “Ligue Nationale Contre le Cancer”, Canceropole Grand Ouest, the Association “CANCEN” and Tours’ Hospital oncology association ACORT.”

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Mathieu.

Additional information

E. Delpire and R. Kiss are co-senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathieu, V., Chantôme, A., Lefranc, F. et al. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase. Cell. Mol. Life Sci. 72, 3731–3746 (2015). https://doi.org/10.1007/s00018-015-1902-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1902-6

Keywords

Navigation