Cancer Chemotherapy and Pharmacology

, Volume 71, Issue 5, pp 1115–1130 | Cite as

A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis

  • Samira Sadat Abolmaali
  • Ali Mohammad Tamaddon
  • Rassoul DinarvandEmail author
Review Article



Methotrexate (MTX) is one of the most widely studied and effective therapeutics agents available to treat many solid tumors, hematologic malignancies, and autoimmune diseases such as rheumatoid arthritis; however, the poor pharmacokinetic and narrow safety margin of the drug limits the therapeutic outcomes of conventional drug delivery systems. For an improved delivery of MTX, several pathophysiological features such as angiogenesis, enhanced permeability and retention effects, acidosis, and expression of specific antigens and receptors can be used either as targets or as tools for drug delivery.


There are many novel delivery systems developed to improve the pitfalls of MTX therapy ranged from polymeric conjugates such as human serum albumin, liposomes, microspheres, solid lipid nanoparticles, polymeric nanoparticles, dendrimers, polymeric micelles, in situ forming hydrogels, carrier erythrocyte, and nanotechnology-based vehicles such as carbon nanotubes, magnetic nanoparticles, and gold nanoparticles. Some are further modified with targeting ligands for active targeting purposes.


Such delivery systems provide prolonged plasma profile, enhanced and specific activity in vitro and in vivo in animal models. Nevertheless, more complementary studies are needed before they can be applied in human.


This review deals with the challenges of conventional systems and achievements of each pharmaceutical class of novel drug delivery vehicle.


Methotrexate Cancer Rheumatoid arthritis Drug delivery Nanoparticle Drug conjugate Human serum albumin Liposome Microsphere Dendrimer 


Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Purcell WT, Ettinger DS (2003) Novel antifolate drugs. Curr Oncol Rep 5(2):114–125PubMedCrossRefGoogle Scholar
  2. 2.
    Bleyer WA (1978) The clinical pharmacology of methotrexate: new applications of an old drug. Cancer 41(1):36–51PubMedCrossRefGoogle Scholar
  3. 3.
    Grim J, Chladek J, Martinkova J (2003) Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet 42(2):139–151PubMedCrossRefGoogle Scholar
  4. 4.
    Cutolo M et al (2001) Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis 60(8):729–735PubMedCrossRefGoogle Scholar
  5. 5.
    Lee DM, Weinblatt ME (2001) Rheumatoid arthritis. Lancet 358(9285):903–911PubMedCrossRefGoogle Scholar
  6. 6.
    Tarner IH, Müller-Ladner U (2008) Drug delivery systems for the treatment of rheumatoid arthritis. Expert Opin Drug Deliv 5(9):1027–1037PubMedCrossRefGoogle Scholar
  7. 7.
    Rahman LK, Chhabra SR (1988) The chemistry of methotrexate and its analogues. Med Res Rev 8(1):95–155PubMedCrossRefGoogle Scholar
  8. 8.
    Chatterji DC, Gallelli JF (1978) Thermal and photolytic decomposition of methotrexate in aqueous solutions. J Pharm Sci 67(4):526–531PubMedCrossRefGoogle Scholar
  9. 9.
    Genestier L et al (2000) Mechanisms of action of methotrexate. Immunopharmacology 47(2–3):247–257PubMedCrossRefGoogle Scholar
  10. 10.
    Cutolo M et al (2000) Antiproliferative and antiinflammatory effects of methotrexate on cultured differentiating myeloid monocytic cells (THP-1) but not on synovial macrophages from patients with rheumatoid arthritis. J Rheumatol 27(11):2551–2557PubMedGoogle Scholar
  11. 11.
    Hillson JL, Furst DE (1997) Pharmacology and pharmacokinetics of methotrexate in rheumatic disease. Practical issues in treatment and design. Rheum Dis Clin North Am 23(4):757–778PubMedCrossRefGoogle Scholar
  12. 12.
    Cronstein BN (1997) The mechanism of action of methotrexate. Rheum Dis Clin North Am 23(4):739–755PubMedCrossRefGoogle Scholar
  13. 13.
    Paxton JW (1982) The protein binding and elimination of methotrexate after intravenous infusions in cancer patients. Clin Exp Pharmacol Physiol 9(3):225–234PubMedCrossRefGoogle Scholar
  14. 14.
    Bleyer WA, Nelson JA, Kamen BA (1997) Accumulation of methotrexate in systemic tissues after intrathecal administration. J Pediatr Hematol Oncol 19(6):530–532PubMedCrossRefGoogle Scholar
  15. 15.
    Creaven PJ et al (1973) Methotrexate in liver and bile after intravenous dosage in man. Br J Cancer 28(6):589–591PubMedCrossRefGoogle Scholar
  16. 16.
    Iqbal MP (1998) Accumulation of methotrexate in human tissues following high-dose methotrexate therapy. J Pak Med Assoc 48(11):341–343PubMedGoogle Scholar
  17. 17.
    Fiehn C (2010) Methotrexate transport mechanisms: the basis for targeted drug delivery and beta-folate-receptor-specific treatment. Clinical and Experimental Rheumatology. 28(5): S40-S45Google Scholar
  18. 18.
    Edno L et al (1996) Total and free methotrexate pharmacokinetics in rheumatoid arthritis patients. Ther Drug Monit 18(2):128–134PubMedCrossRefGoogle Scholar
  19. 19.
    Whitehead VM et al (2005) Accumulation of methotrexate and methotrexate polyglutamates in lymphoblasts and treatment outcome in children with B-progenitor-cell acute lymphoblastic leukemia: a pediatric oncology group study. Leukemia 19(4):533–536PubMedGoogle Scholar
  20. 20.
    Visser K, van der Heijde DM (2009) Risk and management of liver toxicity during methotrexate treatment in rheumatoid and psoriatic arthritis: a systematic review of the literature. Clin Exp Rheumatol 27(6):1017–1025PubMedGoogle Scholar
  21. 21.
    van Ede AE et al (1998) Methotrexate in rheumatoid arthritis: an update with focus on mechanisms involved in toxicity. Semin Arthritis Rheum 27(5):277–292PubMedCrossRefGoogle Scholar
  22. 22.
    Koch AE, Distler O (2007) Vasculopathy and disordered angiogenesis in selected rheumatic diseases: rheumatoid arthritis and systemic sclerosis. Arthritis Res Ther 9(Suppl 2):S3PubMedCrossRefGoogle Scholar
  23. 23.
    Koning GA et al (2006) Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis. Arthritis Rheum 54(4):1198–1208PubMedCrossRefGoogle Scholar
  24. 24.
    Gaffo A, Saag KG, Curtis JR (2006) Treatment of rheumatoid arthritis. Am J Health Syst Pharm 63(24):2451–2465PubMedCrossRefGoogle Scholar
  25. 25.
    Levick JR (1981) Permeability of rheumatoid and normal human synovium to specific plasma proteins. Arthritis Rheum 24(12):1550–1560PubMedCrossRefGoogle Scholar
  26. 26.
    Levick JR (1995) Microvascular architecture and exchange in synovial joints. Microcirculation 2(3):217–233PubMedCrossRefGoogle Scholar
  27. 27.
    Levick JR (1990) Hypoxia and acidosis in chronic inflammatory arthritis; relation to vascular supply and dynamic effusion pressure. J Rheumatol 17(5):579–582PubMedGoogle Scholar
  28. 28.
    Halin C, Neri D (2001) Antibody-based targeting of angiogenesis. Crit Rev Ther Drug Carrier Syst 18(3):299–339PubMedCrossRefGoogle Scholar
  29. 29.
    Nagai T et al (2006) In vitro and in vivo efficacy of a recombinant immunotoxin against folate receptor beta on the activation and proliferation of rheumatoid arthritis synovial cells. Arthritis Rheum 54(10):3126–3134PubMedCrossRefGoogle Scholar
  30. 30.
    Trachsel E et al (2007) Antibody-mediated delivery of IL-10 inhibits the progression of established collagen-induced arthritis. Arthritis Res Ther 9(1):R9PubMedCrossRefGoogle Scholar
  31. 31.
    Stehle G et al (1999) Methotrexate-albumin conjugate causes tumor growth delay in Dunning R3327 HI prostate cancer-bearing rats. Anticancer Drugs 10(4):405–411PubMedCrossRefGoogle Scholar
  32. 32.
    Wunder A et al (1998) Antitumor activity of methotrexate-albumin conjugates in rats bearing a Walker-256 carcinoma. Int J Cancer 76(6):884–890PubMedCrossRefGoogle Scholar
  33. 33.
    Wunder A et al (2003) Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol 170(9):4793–4801PubMedGoogle Scholar
  34. 34.
    Nakashima-Matsushita N et al (1999) Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum 42(8):1609–1616PubMedCrossRefGoogle Scholar
  35. 35.
    Fiehn C et al (2004) Albumin-coupled methotrexate (MTX-HSA) is a new anti-arthritic drug which acts synergistically to MTX. Rheumatology (Oxford) 43(9):1097–1105CrossRefGoogle Scholar
  36. 36.
    Fiehn C et al (2008) Targeted drug delivery by in vivo coupling to endogenous albumin: an albumin-binding prodrug of methotrexate (MTX) is better than MTX in the treatment of murine collagen-induced arthritis. Annals Rheum Dis 67(8):1188–1191CrossRefGoogle Scholar
  37. 37.
    Han J et al (2001) Altered pharmacokinetics and liver targetability of methotrexate by conjugation with lactosylated albumins. Drug Deliv J Deliv Target Therapeutic Agents 8(3):125–134Google Scholar
  38. 38.
    Han JH et al (1999) Enhanced hepatocyte uptake and liver targeting of methotrexate using galactosylated albumin as a carrier. Int J Pharm 188(1):39–47PubMedCrossRefGoogle Scholar
  39. 39.
    Chau Y, Tan FE, Langer R (2004) Synthesis and characterization of dextran-peptide-methotrexate conjugates for tumor targeting via mediation by matrix metalloproteinase II and matrix metalloproteinase IX. Bioconjug Chem 15(4):931–941PubMedCrossRefGoogle Scholar
  40. 40.
    Chau Y et al (2006) Investigation of targeting mechanism of new dextran-peptide-methotrexate conjugates using biodistribution study in matrix-metalloproteinase-overexpressing tumor xenograft model. J Pharm Sci 95(3):542–551PubMedCrossRefGoogle Scholar
  41. 41.
    Nevozhay D et al (2006) The effect of the substitution level of some dextran-methotrexate conjugates on their antitumor activity in experimental cancer models. Anticancer Res 26(3A):2179–2186PubMedGoogle Scholar
  42. 42.
    Nevozhay D et al (2006) Antitumor properties and toxicity of dextran-methotrexate conjugates are dependent on the molecular weight of the carrier. Anticancer Res 26(2A):1135–1143PubMedGoogle Scholar
  43. 43.
    Yousefi G et al (2010) Synthesis and characterization of methotrexate polyethylene glycol esters as a drug delivery system. Chem Pharm Bull (Tokyo) 58(2):147–153CrossRefGoogle Scholar
  44. 44.
    Shukla G et al (2008) Polyethylene glycol conjugates of methotrexate and melphalan: synthesis, radiolabeling and biologic studies. Cancer Biother Radiopharm 23(5):571–579PubMedCrossRefGoogle Scholar
  45. 45.
    Riebeseel K et al (2002) Polyethylene glycol conjugates of methotrexate varying in their molecular weight from MW 750 to MW 40000: synthesis, characterization, and structure-activity relationships in vitro and in vivo. Bioconjug Chem 13(4):773–785PubMedCrossRefGoogle Scholar
  46. 46.
    Homma A et al (2009) Novel hyaluronic acid-methotrexate conjugates for osteoarthritis treatment. Bioorg Med Chem 17(13):4647–4656PubMedCrossRefGoogle Scholar
  47. 47.
    Homma A et al (2012) Synthesis and optimization of hyaluronic acid-methotrexate conjugates to maximize benefit in the treatment of osteoarthritis. Bioorganic Med Chem 18(3):1062–1075CrossRefGoogle Scholar
  48. 48.
    Bowman BJ, Ofner Iii CM (2000) Characterization and in vitro methotrexate release from methotrexate/gelatin conjugates of opposite conjugate bond polarity. Pharm Res. 17(10):1309–1315Google Scholar
  49. 49.
    Smith GK et al (1997) Toward antibody-directed enzyme prodrug therapy with the T268G mutant of human carboxypeptidase A1 and novel in vivo stable prodrugs of methotrexate. J Biol Chem 272(25):15804–15816PubMedCrossRefGoogle Scholar
  50. 50.
    Ou XH et al (2004) Receptor binding characteristics and cytotoxicity of insulin-methotrexate. World J Gastroenterol 10(16):2430–2433PubMedGoogle Scholar
  51. 51.
    Lindgren M et al (2006) Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem Pharmacol 71(4):416–425PubMedCrossRefGoogle Scholar
  52. 52.
    Wu Z et al (2012) Development of methotrexate proline prodrug to overcome resistance by MDA-MB-231 cells. Bioorganic Med Chem Lett 20(17):5108–5112CrossRefGoogle Scholar
  53. 53.
    Hudecz F et al (1993) Influence of carrier on biodistribution and in vitro cytotoxicity of methotrexate-branched polypeptide conjugates. Bioconjug Chem 4(1):25–33PubMedCrossRefGoogle Scholar
  54. 54.
    Williams AS et al (1995) Differential effects of methotrexate and liposomally conjugated methotrexate in rat adjuvant-induced arthritis. Clin Exp Immunol 102(3):560–565PubMedCrossRefGoogle Scholar
  55. 55.
    Williams AS et al (1996) A single intra-articular injection of liposomally conjugated methotrexate suppresses joint inflammation in rat antigen-induced arthritis. Br J Rheumatol 35(8):719–724PubMedCrossRefGoogle Scholar
  56. 56.
    Williams AS et al (2001) Amelioration of rat antigen-induced arthritis by liposomally conjugated methotrexate is accompanied by down-regulation of cytokine mRNA expression. Rheumatology (Oxford) 40(4):375–383CrossRefGoogle Scholar
  57. 57.
    Metselaar JM et al (2004) Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann Rheum Dis 63(4):348–353PubMedCrossRefGoogle Scholar
  58. 58.
    Metselaar JM et al (2003) Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum 48(7):2059–2066PubMedCrossRefGoogle Scholar
  59. 59.
    Hong MS et al (2001) Prolonged blood circulation of methotrexate by modulation of liposomal composition. Drug Deliv 8(4):231–237PubMedCrossRefGoogle Scholar
  60. 60.
    Prabhu P et al (2012) Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. Int J Nanomed 7:177–186CrossRefGoogle Scholar
  61. 61.
    Pignatello R et al (2005) Lipophilic conjugates of methotrexate with glucosyl-lipoamino acids: calorimetric study of the interaction with a biomembrane model. Thermochim Acta 426(1–2):163–171CrossRefGoogle Scholar
  62. 62.
    Pignatello R et al (2003) Effect of liposomal delivery on in vitro antitumor activity of lipophilic conjugates of methotrexate with lipoamino acids. Drug Deliv 10(2):95–100PubMedCrossRefGoogle Scholar
  63. 63.
    Pignatello R et al (2001) Lipophilic methotrexate conjugates with glucose-lipoamino acid moieties: synthesis and in vitro antitumor activity. Drug Develop Res 52(3):454–461CrossRefGoogle Scholar
  64. 64.
    Kuznetsova N et al (2009) Liposomes loaded with lipophilic prodrugs of methotrexate and melphalan as convenient drug delivery vehicles. J Drug Deliv Sci Technol 19(1):51–59Google Scholar
  65. 65.
    Timothy DH et al (1983) Antibody-targeted liposomes: increase in specific toxicity of methotrexate-gamma aspartate. Proc Natl Acad Sci U S A 80:1377–1381CrossRefGoogle Scholar
  66. 66.
    Singh M et al (1989) Targeting of methotrexate-containing liposomes with a monoclonal antibody against human renal cancer. Cancer Res 49(14):3976–3984PubMedGoogle Scholar
  67. 67.
    Singh M et al (1991) Inhibition of human renal cancer by monoclonal antibody targeted methotrexate-containing liposomes in an ascites tumor model. Cancer Lett 56(2):97–102PubMedCrossRefGoogle Scholar
  68. 68.
    Oommen E et al (1999) Niosome entrapped β-cyclodextrin methotrexate complex as a drug delivery system. Indian J Pharmacol 31(4):279–284Google Scholar
  69. 69.
    Sheena IP et al (1997) Niosomal entrapment of hydroxypropyl-β-cylodextrin-methotrexate complex as a drug delivery device. Pharm Sci 3(12):579–582Google Scholar
  70. 70.
    Singh UV, Udupa N (1997) In vitro characterization of methotrexate loaded poly(lactic-co-glycolic) acid microspheres and antitumor efficacy in Sarcoma-180 mice bearing tumor. Pharm Acta Helv 72(3):165–173PubMedCrossRefGoogle Scholar
  71. 71.
    Singh UV et al (1997) Preparation, characterization, and antitumor efficacy of biodegradable poly(lactic acid) methotrexate implantable films. Drug Deliv 4(2):101–106CrossRefGoogle Scholar
  72. 72.
    Singh UV, Udupa N (1998) In vitro characterization of methotrexate-loaded poly(lactic acid) microspheres of different molecular weights. Drug Deliv J Deliv Targeting Therapeutic Agents 5(1):57–61Google Scholar
  73. 73.
    Liang LS et al (2004) Methotrexate loaded poly(l-lactic acid) microspheres for intra-articular delivery of methotrexate to the joint. J Pharm Sci 93(4):943–956PubMedCrossRefGoogle Scholar
  74. 74.
    Narayani R, Panduranga Rao K (1993) Preparation, characterisation and in vitro stability of hydrophilic gelatin microspheres using a gelatin-methotrexate conjugate. Int J Pharm 95(1–3):85–91CrossRefGoogle Scholar
  75. 75.
    Narayani R, Panduranga Rao K (1994) Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres. J Microencapsul 11(1):69–77PubMedCrossRefGoogle Scholar
  76. 76.
    Narayani R, PandurangaRao K (1995) pH-responsive gelatin microspheres for oral delivery of anticancer drug methotrexate. J Appl Polym Sci 58(10):1761–1769CrossRefGoogle Scholar
  77. 77.
    Narayani R, PandurangaRao K (1996) Solid tumor chemotherapy using injectable gelatin microspheres containing free methotrexate and conjugated methotrexate. Int J Pharm 142(1):25–32CrossRefGoogle Scholar
  78. 78.
    Sun Y et al (2009) The effect of chitosan molecular weight on the characteristics of spray-dried methotrexate-loaded chitosan microspheres for nasal administration. Drug Dev Ind Pharm 35(3):379–386PubMedCrossRefGoogle Scholar
  79. 79.
    Sun Y et al (2012) Methotrexate-loaded microspheres for nose to brain delivery: in vitro/in vivo evaluation. J Drug Deliv Sci Technol 22(2):167–174Google Scholar
  80. 80.
    Taheri A et al (2011) Nanoparticles of conjugated methotrexate-human serum albumin: preparation and cytotoxicity evaluations. J Nanomaterials, Art ID 768201Google Scholar
  81. 81.
    Taheri A et al (2012) The in vivo antitumor activity of LHRH targeted methotrexate-human serum albumin nanoparticles in 4T1 tumor-bearing Balb/c mice. Int JPharm 431(1–2):183–189CrossRefGoogle Scholar
  82. 82.
    Taheri A et al (2012) Enhanced anti-tumoral activity of methotrexate-human serum albumin conjugated nanoparticles by targeting with luteinizing hormone-releasing hormone (LHRH) peptide. Int J Mol Sci 12(7):4591–4608Google Scholar
  83. 83.
    Taheri A et al (2012) Targeted delivery of methotrexate to tu mor cells using biotin functionalized methotrexate-human serum albumin conjugated nanoparticles. J Biomed Nanotechnol 7(6):743–753CrossRefGoogle Scholar
  84. 84.
    Taheri A et al (2012) Use of biotin targeted methotrexate-human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy. Int J Nanomed 6:1863–1874Google Scholar
  85. 85.
    Taheri A et al (2012) Trastuzumab decorated methotrexate-human serum albumin conjugated nanoparticles for targeted delivery to HER2 positive tumor cells. Eur J Pharm Sci 47(2):331–340PubMedCrossRefGoogle Scholar
  86. 86.
    Jain S et al (2011) Synthesis, pharmacoscintigraphic evaluation and antitumor efficacy of methotrexate-loaded, folate-conjugated, stealth albumin nanoparticles. Nanomedicine (Lond) 6(10):1733–1754CrossRefGoogle Scholar
  87. 87.
    Trapani A et al (2011) Methotrexate-loaded chitosan- and glycol chitosan-based nanoparticles: a promising strategy for the administration of the anticancer drug to brain tumors. AAPS Pharm Sci Tech 12(4):1302–1311CrossRefGoogle Scholar
  88. 88.
    Azadi A et al (2012) Preparation and optimization of surface-treated methotrexate-loaded nanogels intended for brain delivery. Carbohydrate Polym 90(1):462–471CrossRefGoogle Scholar
  89. 89.
    Ji JG et al (2012) Preparation, characterization, and in vitro release of folic acid-conjugated chitosan nanoparticles loaded with methotrexate for targeted delivery. Polym Bull 68(6):1707–1720CrossRefGoogle Scholar
  90. 90.
    Reddy LH, Murthy RR (2004) Influence of polymerization technique and experimental variables on the particle properties and release kinetics of methotrexate from poly(butylcyanoacrylate) nanoparticles. Acta Pharmaceutica 54(2):103–118PubMedGoogle Scholar
  91. 91.
    Gao K, Jiang X (2006) Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm 310(1–2):213–219PubMedCrossRefGoogle Scholar
  92. 92.
    Cascone MG et al (2002) Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med 13(5):523–526PubMedCrossRefGoogle Scholar
  93. 93.
    Kong SY et al. (2008) Preparation and in vitro release of methotrexate complexation with PEGylated dendrimers. Chinese Pharm J. 43(14): 1085 + 1086–1091Google Scholar
  94. 94.
    Gurdag S et al (2006) Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjug Chem 17(2):275–283PubMedCrossRefGoogle Scholar
  95. 95.
    Quintana A et al (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19(9):1310–1316PubMedCrossRefGoogle Scholar
  96. 96.
    Zong H et al (2012) Bifunctional PAMAM dendrimer conjugates of folic acid and methotrexate with defined ratio. Biomacromolecules 13(4):982–991PubMedCrossRefGoogle Scholar
  97. 97.
    Choi SK et al (2012) Photochemical release of methotrexate from folate receptor-targeting PAMAM dendrimer nanoconjugate. Photochem Photobiol Sci 11(4):653–660PubMedCrossRefGoogle Scholar
  98. 98.
    Shukla R et al (2008) HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb. Nanotechnology 19(29):7CrossRefGoogle Scholar
  99. 99.
    Kaminskas LM et al (2009) Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly-l-lysine dendrimers. Mol Pharm 6(4):1190–1204PubMedCrossRefGoogle Scholar
  100. 100.
    Kaminskas LM et al (2010) Capping methotrexate alpha-carboxyl groups enhances systemic exposure and retains the cytotoxicity of drug conjugated PEGylated polylysine dendrimers. Mol Pharm 8(2):338–349CrossRefGoogle Scholar
  101. 101.
    Kurmi BD et al (2011) Lactoferrin-conjugated dendritic nanoconstructs for lung targeting of methotrexate. J Pharm Sci 100(6):2311–2320PubMedCrossRefGoogle Scholar
  102. 102.
    Dhanikula RS et al (2008) Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 5(1):105–116PubMedCrossRefGoogle Scholar
  103. 103.
    Dhanikula RS, Hildgen P (2007) Influence of molecular architecture of polyether-co-polyester dendrimers on the encapsulation and release of methotrexate. Biomaterials 28(20):3140–3152PubMedCrossRefGoogle Scholar
  104. 104.
    Kohler N et al (2006) Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6):785–792PubMedCrossRefGoogle Scholar
  105. 105.
    Kohler N et al (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21(19):8858–8864PubMedCrossRefGoogle Scholar
  106. 106.
    Zhu L et al (2009) Targeted delivery of methotrexate to skeletal muscular tissue by thermosensitive magnetoliposomes. Int J Pharm 370(1–2):136–143PubMedCrossRefGoogle Scholar
  107. 107.
    Devineni D, Blanton CD, Gallo JM (1995) Preparation and in vitro evaluation of magnetic microsphere-methotrexate conjugate drug delivery systems. Bioconjug Chem 6(2):203–210PubMedCrossRefGoogle Scholar
  108. 108.
    Zhang X, Chen F, Ni J (2009) A novel method to prepare magnetite chitosan microspheres conjugated with methotrexate (MTX) for the controlled release of MTX as a magnetic targeting drug delivery system. Drug Deliv 16(5):280–288PubMedCrossRefGoogle Scholar
  109. 109.
    Jeong Y et al (2009) Methotrexate-incorporated polymeric micelles composed of methoxy poly(ethyleneglycol)-grafted chitosan. Macromol Res 17(7):538–543CrossRefGoogle Scholar
  110. 110.
    Zhang Y, Jin T, Zhuo RX (2005) Methotrexate-loaded biodegradable polymeric micelles: preparation, physicochemical properties and in vitro drug release. Colloids Surf B Biointerfaces 44(2–3):104–109PubMedCrossRefGoogle Scholar
  111. 111.
    Li Y, Kwon GS (1999) Micelle-like structures of poly(ethylene oxide)-block-poly(2- hydroxyethyl aspartamide)-methotrexate conjugates. Colloids Surf B Biointerfaces 16(1–4):217–226CrossRefGoogle Scholar
  112. 112.
    Li Y, Kwon GS (2000) Methotrexate esters of poly(ethylene oxide)-block-poly(2-hydroxyethyl-l-aspartamide). Part I: effects of the level of methotrexate conjugation on the stability of micelles and on drug release. Pharm Res 17(5):607–611PubMedCrossRefGoogle Scholar
  113. 113.
    Pluta J, Karolewicz B (2006) In vitro studies of the properties of thermosensitive systems prepared on Pluronic F-127 as vehicles for methotrexate for delivery to solid tumours. Polim Med 36(3):37–53PubMedGoogle Scholar
  114. 114.
    Miao B, Song C, Ma G (2011) Injectable thermosensitive hydrogels for intra-articular delivery of methotrexate. J Appl Polym Sci 122(3):2139–2145CrossRefGoogle Scholar
  115. 115.
    Karasulu HY et al (2009) Determining the cytotoxicity of methotrexate-loaded microemulsion on human breast, ovarian, and prostate carcinoma cell lines: a new modality for an old drug. Drug Develop Res 70(1):49–56CrossRefGoogle Scholar
  116. 116.
    Karasulu HY et al (2007) Controlled release of methotrexate from w/o microemulsion and its in vitro antitumor activity. Drug Deliv 14(4):225–233PubMedCrossRefGoogle Scholar
  117. 117.
    Moura JA et al (2011) Novel formulation of a methotrexate derivative with a lipid nanoemulsion. Int J Nanomed 6:2285–2295Google Scholar
  118. 118.
    Ruckmani K, Sivakumar M, Ganeshkumar PA (2006) Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma. J Nanosci Nanotechnol 6(9–10):2991–2995PubMedCrossRefGoogle Scholar
  119. 119.
    Utreja S, Khopade AJ, Jain NK (1999) Lipoprotein-mimicking biovectorized systems for methotrexate delivery. Pharm Acta Helv 73(6):275–279PubMedCrossRefGoogle Scholar
  120. 120.
    Yuan SH et al (2009) Slow release properties and liver-targeting characteristics of methotrexate erythrocyte carriers. Fundam Clin Pharmacol 23(2):189–196PubMedCrossRefGoogle Scholar
  121. 121.
    Mishra PR, Jain NK (2000) Surface modified methotrexate loaded erythrocytes for enhanced macrophage uptake. J Drug Target 8(4):217–224PubMedCrossRefGoogle Scholar
  122. 122.
    Mishra PR, Jain NK (2002) Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake. ‘A study on the rat’. Int J Pharm 231(2):145–153PubMedCrossRefGoogle Scholar
  123. 123.
    Chen YH et al (2007) Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 4(5):713–722PubMedCrossRefGoogle Scholar
  124. 124.
    Samori C et al (2010) Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem Commun 46(9):1494–1496CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Samira Sadat Abolmaali
    • 1
  • Ali Mohammad Tamaddon
    • 1
  • Rassoul Dinarvand
    • 2
    Email author
  1. 1.Pharmaceutical Nanotechnology and Biomaterials Research Center, Faculty of PharmacyShiraz University of Medical SciencesShirazIran
  2. 2.Nanotechnology Research Centre, Faculty of PharmacyTehran University of Medical SciencesTehranIran

Personalised recommendations