CardioVascular and Interventional Radiology

, Volume 36, Issue 1, pp 204–212 | Cite as

Toxicity of Doxorubicin on Pig Liver After Chemoembolization with Doxorubicin-loaded Microspheres: A Pilot DNA-microarrays and Histology Study

  • Valentin VerretEmail author
  • Julien Namur
  • Saïda Homayra Ghegediban
  • Michel Wassef
  • Laurence Moine
  • Michel Bonneau
  • Jean-Pierre Pelage
  • Alexandre Laurent
Laboratory Investigation



The potential mechanisms accounting for the hepatotoxicity of doxorubicin-loaded microspheres in chemoembolization were examined by combining histology and DNA-microarray techniques.


The left hepatic arteries of two pigs were embolized with 1 mL of doxorubicin-loaded (25 mg; (DoxMS)) or non-loaded (BlandMS) microspheres. The histopathological effects of the embolization were analyzed at 1 week. RNAs extracted from both the embolized and control liver areas were hybridized onto Agilent porcine microarrays. Genes showing significantly different expression (p < 0.01; fold-change > 2) between two groups were classified by biological process.


At 1 week after embolization, DoxMS caused arterial and parenchymal necrosis in 51 and 38 % of embolized vessels, respectively. By contrast, BlandMS did not cause any tissue damage. Up-regulated genes following embolization with DoxMS (vs. BlandMS, n = 353) were mainly involved in cell death, apoptosis, and metabolism of doxorubicin. Down-regulated genes (n = 120) were mainly related to hepatic functions, including enzymes of lipid and carbohydrate metabolisms. Up-regulated genes included genes related to cell proliferation (growth factors and transcription factors), tissue remodeling (MMPs and several collagen types), inflammatory reaction (interleukins and chemokines), and angiogenesis (angiogenic factors and HIF1a pathway), all of which play an important role in liver healing and regeneration.


DoxMS caused lesions to the liver, provoked cell death, and disturbed liver metabolism. An inflammatory repair process with cell proliferation, tissue remodeling, and angiogenesis was rapidly initiated during the first week after chemoembolization. This pilot study provides a comprehensive method to compare different types of DoxMS in healthy animals or tumor models.


Drug-loaded microspheres Doxorubicin Liver chemoembolization DNA-microarrays 


Conflict of interest

The authors declared that they do not have anything to disclose regarding funding from industries or conflict of interest with respect to this manuscript.

Supplementary material

270_2012_369_MOESM1_ESM.xls (82 kb)
Supplementary material 1 (XLS 82 kb)


  1. 1.
    Llovet JM, Bruix J (2003) Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology 37:429–442PubMedCrossRefGoogle Scholar
  2. 2.
    Stuart K (2003) Chemoembolization in the management of liver tumors. Oncologist 8:425–437PubMedCrossRefGoogle Scholar
  3. 3.
    Lammer J, Malagari K, Vogl T et al (2010) Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Interv Radiol 33:41–52CrossRefGoogle Scholar
  4. 4.
    Malagari K, Chatzimichael K, Alexopoulou E et al (2008) Transarterial chemoembolization of unresectable hepatocellular carcinoma with drug eluting beads: results of an open-label study of 62 patients. Cardiovasc Interv Radiol 31:269–280CrossRefGoogle Scholar
  5. 5.
    Lewis AL, Taylor RR, Hall B et al (2006) Pharmacokinetic and safety study of doxorubicin-eluting beads in a porcine model of hepatic arterial embolization. J Vasc Interv Radiol 17:1335–1343PubMedCrossRefGoogle Scholar
  6. 6.
    Hong K, Khwaja A, Liapi E et al (2006) New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer. Clin Cancer Res 12:2563–2567PubMedCrossRefGoogle Scholar
  7. 7.
    Namur J, Wassef M, Millot JM et al (2010) Drug-eluting beads for liver embolization: concentration of doxorubicin in tissue and in beads in a pig model. J Vasc Interv Radiol 21:259–267PubMedCrossRefGoogle Scholar
  8. 8.
    Varela M, Real MI, Burrel M et al (2007) Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol 46:474–481PubMedCrossRefGoogle Scholar
  9. 9.
    Poon RT, Tso WK, Pang RW et al (2007) A phase I/II trial of chemoembolization for hepatocellular carcinoma using a novel intra-arterial drug-eluting bead. Clin Gastroenterol Hepatol 5:1100–1108PubMedCrossRefGoogle Scholar
  10. 10.
    van Malenstein H, Maleux G, Vandecaveye V et al (2011) A randomized phase II study of drug-eluting beads versus transarterial chemoembolization for unresectable hepatocellular carcinoma. Onkologie 34:368–376PubMedCrossRefGoogle Scholar
  11. 11.
    Carter S, Martin Ii RC (2009) Drug-eluting bead therapy in primary and metastatic disease of the liver. HPB (Oxford) 11:541–550CrossRefGoogle Scholar
  12. 12.
    Liapi E, Geschwind JF (2011) Transcatheter arterial chemoembolization for liver cancer: is it time to distinguish conventional from drug-eluting chemoembolization? Cardiovasc Interv Radiol 34:37–49CrossRefGoogle Scholar
  13. 13.
    Malagari K, Pomoni M, Spyridopoulos TN et al (2011) Safety profile of sequential transcatheter chemoembolization with DC Bead™: results of 237 hepatocellular carcinoma (HCC) patients. Cardiovasc Interv Radiol 34(4):774–785CrossRefGoogle Scholar
  14. 14.
    Chlebowski RT (1979) Adriamycin (doxorubicin) cardiotoxicity: a review. West J Med 131:364–368PubMedGoogle Scholar
  15. 15.
    Geschwind JF, Artemov D, Abraham S et al (2000) Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J Vasc Interv Radiol 11:1245–1255PubMedCrossRefGoogle Scholar
  16. 16.
    Gomase VS, Tagore S (2008) Toxicogenomics. Curr Drug Metab 9:250–254PubMedCrossRefGoogle Scholar
  17. 17.
    Blomme EA, Yang Y, Waring JF (2009) Use of toxicogenomics to understand mechanisms of drug-induced hepatotoxicity during drug discovery and development. Toxicol Lett 186:22–31PubMedCrossRefGoogle Scholar
  18. 18.
    Verret V, Wassef M, Pelage JP et al (2011) Influence of degradation on inflammatory profile of polyphosphazene coated PMMA and trisacryl gelatin microspheres in a sheep uterine artery embolization model. Biomaterials 32:339–351PubMedCrossRefGoogle Scholar
  19. 19.
    Yuki I, Lee D, Murayama Y et al (2007) Thrombus organization and healing in an experimental aneurysm model. Part II. The effect of various types of bioactive bioabsorbable polymeric coils. J Neurosurg 107:109–120PubMedCrossRefGoogle Scholar
  20. 20.
    Lewis AL (2009) DC Bead: a major development in the toolbox for the interventional oncologist. Expert Rev Med Devices 6:389–400PubMedCrossRefGoogle Scholar
  21. 21.
    Lewis AL, Gonzalez MV, Lloyd AW et al (2006) DC Bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol 17:335–342PubMedCrossRefGoogle Scholar
  22. 22.
    Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3PubMedCrossRefGoogle Scholar
  23. 23.
    Dembele D, Jost B, Thibault-Carpentier C et al (2007) Zoe: a user friendly tool for filtering microarray data. In: Proceedings JOBIM Marseille, FranceGoogle Scholar
  24. 24.
    Ahel D, Horejsi Z, Wiechens N et al (2009) Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325:1240–1243PubMedCrossRefGoogle Scholar
  25. 25.
    Jung EU, Yoon JH, Lee YJ et al (2010) Hypoxia and retinoic acid-inducible NDRG1 expression is responsible for doxorubicin and retinoic acid resistance in hepatocellular carcinoma cells. Cancer Lett 298:9–15PubMedCrossRefGoogle Scholar
  26. 26.
    Perugorria MJ, Castillo J, Latasa MU et al (2009) Wilms’ tumor 1 gene expression in hepatocellular carcinoma promotes cell dedifferentiation and resistance to chemotherapy. Cancer Res 69:1358–1367PubMedCrossRefGoogle Scholar
  27. 27.
    Li Y, Zou L, Li Q et al (2010) Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nat Med 16:214–218PubMedCrossRefGoogle Scholar
  28. 28.
    Meulmeester E, Jochemsen AG (2008) p53: a guide to apoptosis. Curr Cancer Drug Targets 8:87–97PubMedCrossRefGoogle Scholar
  29. 29.
    Margalit O, Amram H, Amariglio N et al (2006) BCL6 is regulated by p53 through a response element frequently disrupted in B-cell non-Hodgkin lymphoma. Blood 107:1599–1607PubMedCrossRefGoogle Scholar
  30. 30.
    Ellen TP, Ke Q, Zhang P et al (2008) NDRG1, a growth and cancer related gene: regulation of gene expression and function in normal and disease states. Carcinogenesis 29:2–8PubMedCrossRefGoogle Scholar
  31. 31.
    Sugiyama H (2010) WT1 (Wilms’ tumor gene 1): biology and cancer immunotherapy. Jpn J Clin Oncol 40:377–387PubMedCrossRefGoogle Scholar
  32. 32.
    Saffroy R, Riou P, Soler G et al (2002) Analysis of alterations of WFDC1, a new putative tumour suppressor gene, in hepatocellular carcinoma. Eur J Hum Genet 10:239–244PubMedCrossRefGoogle Scholar
  33. 33.
    Page C, Curtis M, Sutter M et al (1997) Integrated pharmacology. DeBoeck Université, BrusselsGoogle Scholar
  34. 34.
    Schroder JM (1992) The neutrophil-activating peptide-1/interleukin-8, a novel neutrophil chemotactic cytokine. Arch Immunol Ther Exp (Warsz) 40:23–31Google Scholar
  35. 35.
    Uchio K, Tuchweber B, Manabe N et al (2002) Cellular retinol-binding protein-1 expression and modulation during in vivo and in vitro myofibroblastic differentiation of rat hepatic stellate cells and portal fibroblasts. Lab Invest 82:619–628PubMedCrossRefGoogle Scholar
  36. 36.
    Hsiao EC, Koniaris LG, Zimmers-Koniaris T et al (2000) Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol Cell Biol 20:3742–3751PubMedCrossRefGoogle Scholar
  37. 37.
    Kaur B, Khwaja FW, Severson EA et al (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 7:134–153PubMedCrossRefGoogle Scholar
  38. 38.
    Cohen T, Nahari D, Cerem LW et al (1996) Interleukin-6 induces the expression of vascular endothelial growth factor. J Biol Chem 271:736–741PubMedCrossRefGoogle Scholar
  39. 39.
    Kollmar O, Scheuer C, Menger MD et al (2006) Macrophage inflammatory protein-2 promotes angiogenesis, cell migration, and tumor growth in hepatic metastasis. Ann Surg Oncol 13:263–275PubMedCrossRefGoogle Scholar
  40. 40.
    Belperio JA, Keane MP, Arenberg DA et al (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8PubMedGoogle Scholar
  41. 41.
    Delhalle S, Blasius R, Dicato M et al (2004) A beginner’s guide to NF-kappaB signaling pathways. Ann N Y Acad Sci 1030:1–13PubMedCrossRefGoogle Scholar
  42. 42.
    Li H, Fredriksson L, Li X et al (2003) PDGF-D is a potent transforming and angiogenic growth factor. Oncogene 22:1501–1510PubMedCrossRefGoogle Scholar
  43. 43.
    Chung N, Jee BK, Chae SW et al (2009) HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells. Mol Biol Rep 36:227–235PubMedCrossRefGoogle Scholar
  44. 44.
    Alfranca A, Gutierrez MD, Vara A et al (2002) c-Jun and hypoxia-inducible factor 1 functionally cooperate in hypoxia-induced gene transcription. Mol Cell Biol 22:12–22PubMedCrossRefGoogle Scholar
  45. 45.
    Song Y, Wu J, Oyesanya RA et al (2009) Sp-1 and c-Myc mediate lysophosphatidic acid-induced expression of vascular endothelial growth factor in ovarian cancer cells via a hypoxia-inducible factor-1-independent mechanism. Clin Cancer Res 15:492–501PubMedCrossRefGoogle Scholar
  46. 46.
    Adini I, Rabinovitz I, Sun JF et al (2003) RhoB controls Akt trafficking and stage-specific survival of endothelial cells during vascular development. Genes Dev 17:2721–2732PubMedCrossRefGoogle Scholar
  47. 47.
    Sahara S, Tanihata H, Sato M et al (2009) Effects of hepatic artery chemoembolization using cisplatin-lipiodol suspension with gelatin sponge particles on swine liver. J Vasc Interv Radiol 20:1359–1364PubMedCrossRefGoogle Scholar
  48. 48.
    Tomashefski JF Jr, Cohen AM, Doershuk CF (1988) Long-term histopathologic follow-up of bronchial arteries after therapeutic embolization with polyvinyl alcohol (Ivalon) in patients with cystic fibrosis. Hum Pathol 19:555–561PubMedCrossRefGoogle Scholar
  49. 49.
    Laurent A, Wassef M, Namur J et al (2009) Recanalization and particle exclusion after embolization of uterine arteries in sheep: a long-term study. Fertil Steril 91:884–892PubMedCrossRefGoogle Scholar
  50. 50.
    Siskin GP, Dowling K, Virmani R et al (2003) Pathologic evaluation of a spherical polyvinyl alcohol embolic agent in a porcine renal model. J Vasc Interv Radiol 14:89–98PubMedCrossRefGoogle Scholar
  51. 51.
    Weichert W, Denkert C, Gauruder-Burmester A et al (2005) Uterine arterial embolization with tris-acryl gelatin microspheres: a histopathologic evaluation. Am J Surg Pathol 29:955–961PubMedCrossRefGoogle Scholar
  52. 52.
    Momparler RL, Karon M, Siegel SE et al (1976) Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res 36:2891–2895PubMedGoogle Scholar
  53. 53.
    Rang H, Dale M, Ritter J et al (2003) Pharmacology. Churchill Livingstone, LondonGoogle Scholar
  54. 54.
    Yoshida M, Suzuki T, Komiya T et al (2001) Induction of MRP5 and SMRP mRNA by adriamycin exposure and its overexpression in human lung cancer cells resistant to adriamycin. Int J Cancer 94:432–437PubMedCrossRefGoogle Scholar
  55. 55.
    Singh SV, Iqbal J, Krishan A (1990) Cytochrome P450 reductase, antioxidant enzymes and cellular resistance to doxorubicin. Biochem Pharmacol 40:385–387PubMedCrossRefGoogle Scholar
  56. 56.
    Ishii I, Kitada M (1997) Multidrug-resistance by induction of inactivation for anti-cancer drugs. Nippon Rinsho 55:1044–1049PubMedGoogle Scholar
  57. 57.
    Sehata S, Kiyosawa N, Atsumi F et al (2005) Microarray analysis of T-2 toxin-induced liver, placenta and fetal liver lesions in pregnant rats. Exp Toxicol Pathol 57:15–28PubMedCrossRefGoogle Scholar
  58. 58.
    Arroyo AG, Iruela-Arispe ML (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86:226–235PubMedCrossRefGoogle Scholar
  59. 59.
    Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655–1669PubMedCrossRefGoogle Scholar
  60. 60.
    Jensen RL, Soleau S, Bhayani MK et al (2002) Expression of hypoxia inducible factor-1 alpha and correlation with preoperative embolization of meningiomas. J Neurosurg 97:658–667PubMedCrossRefGoogle Scholar
  61. 61.
    Sure U, Battenberg E, Dempfle A et al (2004) Hypoxia-inducible factor and vascular endothelial growth factor are expressed more frequently in embolized than in nonembolized cerebral arteriovenous malformations. Neurosurgery 55:663–669 discussion 669-670PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2012

Authors and Affiliations

  • Valentin Verret
    • 6
    Email author
  • Julien Namur
    • 6
  • Saïda Homayra Ghegediban
    • 6
  • Michel Wassef
    • 1
  • Laurence Moine
    • 2
  • Michel Bonneau
    • 3
  • Jean-Pierre Pelage
    • 4
  • Alexandre Laurent
    • 3
    • 5
  1. 1.Department of Pathology, Faculty of Medicine, AP-HP Hôpital LariboisièreUniversity of Paris 7—Denis DiderotParisFrance
  2. 2.Faculté de Pharmacie, UMR CNRS 8612, IFR 141-ITFMUniversité Paris SudChâtenay-MalabryFrance
  3. 3.Centre de Recherche En Imagerie InterventionnelleAP-HP/INRAJouy-en-JosasFrance
  4. 4.Department of Interventional RadiologyAP-HP Hôpital Ambroise ParéBoulogne-BillancourtFrance
  5. 5.Department of Neuroradiology, Faculty of Medicine, AP-HP Hôpital LariboisèreUniversity of Paris 7—Denis DiderotParisFrance
  6. 6.ArchimMedJouy-en-JosasFrance

Personalised recommendations