Skip to main content
Log in

Synthetic ceramic macroporous blocks as a scaffold in ectopic bone formation induced by recombinant human bone morphogenetic protein 6 within autologous blood coagulum in rats

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

We have recently developed an autologous bone graft substitute (ABGS) containing recombinant human bone morphogenetic protein 6 (rhBMP6) in autologous blood coagulum (ABC) that induces new bone formation in vivo. In order to improve biomechanical properties of the implant, compression resistant matrix (CRM) consisting of synthetic ceramics in the form of macroporous cylinders was added to the ABGS and we evaluated the biomechanical properties and the quantity and quality of bone formation following subcutaneous implantation in rats.

Methods

ABGS implants containing rhBMP6 in ABC with cylindrical ceramic blocks were implanted subcutaneously (n = 6 per time point) in the axillary region of Sprague-Dawley rats and removed at specified time points (7, 14, 21, 35, and 50 days). The quantity and quality of newly formed bone were analyzed by microCT, histology, and histomorphometric analyses. Biomechanical properties of ABGS formulations were determined by employing the cut test.

Results

MicroCT analyses revealed that ABGS implants induced formation of new bone within ceramic blocks. Histological analysis revealed that on day seven following implantation, the endochondral ossification occupied the peripheral part of implants. On days 14 and 21, newly formed bone was present both around the ceramic block and through the pores inside the block. On both days 35 and 50, cortical bone encircled the ceramic block while inside the block, bone covered the ceramic surface surrounding the pores. Within the osseous circles, there were few trabeculae and bone marrow containing adipocytes. ABGS containing cylindrical ceramic blocks were more rigid and had significantly increased stiffness compared with implants containing ceramic particles as CRM.

Conclusion

We demonstrated that macroporous ceramic blocks in a form of cylinders are promising CRMs with good handling and enhanced biomechanical properties, supporting bone formation with ABGS containing rhBMP6 within autologous blood coagulum. Hence, ABGS containing ceramic blocks should be tested in preclinical models including diaphyseal segmental defects and non-unions in larger animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grgurevic L, Pecina M, Vukicevic S (2017) Marshall R. Urist and the discovery of bone morphogenetic proteins. Int Orthop 41:1065–1069. https://doi.org/10.1007/s00264-017-3402-9

    Article  PubMed  Google Scholar 

  2. Sampath TK, Reddi AH (2020) Discovery of bone morphogenetic proteins-a historical perspective. Bone 140:115548. https://doi.org/10.1016/j.bone.2020.115548

  3. Sampath TK, Vukicevic S (2020) Biology of bone morphogenetic protein in bone repair and regeneration: a role for autologous blood coagulum as carrier. Bone 115602. https://doi.org/10.1016/j.bone.2020.115602

  4. Pecina M, Giltaij LR, Vukicevic S (2001) Orthopaedic applications of osteogenic protein-1 (BMP-7). Int Orthop 25:203–208. https://doi.org/10.1007/s002640100262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dumic-Cule I, Peric M, Kucko L, Grgurevic L, Pecina M, Vukicevic S (2018) Bone morphogenetic proteins in fracture repair. Int Orthop 42:2619–2626. https://doi.org/10.1007/s00264-018-4153-y

    Article  PubMed  Google Scholar 

  6. Song K, Krause C, Shi S, Patterson M, Suto R, Grgurevic L, Vukicevic S, van Dinther M, Falb D, Ten Dijke P, Alaoui-Ismaili MH (2010) Identification of a key residue mediating bone morphogenetic protein (BMP)-6 resistance to noggin inhibition allows for engineered BMPs with superior agonist activity. J Biol Chem 285:12169–12180. https://doi.org/10.1074/jbc.M109.087197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vukicevic S, Oppermann H, Verbanac D, Jankolija M, Popek I, Curak J, Brkljacic J, Pauk M, Erjavec I, Francetic I, Dumic-Cule I, Jelic M, Durdevic D, Vlahovic T, Novak R, Kufner V, Bordukalo Niksic T, Kozlovic M, Banic Tomisic Z, Bubic-Spoljar J, Bastalic I, Vikic-Topic S, Peric M, Pecina M, Grgurevic L (2014) The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int Orthop 38:635–647. https://doi.org/10.1007/s00264-013-2201-1

    Article  PubMed  Google Scholar 

  8. Grgurevic L, Oppermann H, Pecin M, Erjavec I, Capak H, Pauk M, Karlovic S, Kufner V, Lipar M, Bubic Spoljar J, Bordukalo-Niksic T, Maticic D, Peric M, Windhager R, Sampath TK, Vukicevic S (2019) Recombinant human bone morphogenetic protein 6 delivered within autologous blood coagulum restores critical size segmental defects of ulna in rabbits. JBMR Plus 3:e10085. https://doi.org/10.1002/jbm4.10085

    Article  CAS  PubMed  Google Scholar 

  9. Vukicevic S, Grgurevic L, Erjavec I, Pecin M, Bordukalo-Niksic T, Stokovic N, Lipar M, Capak H, Maticic D, Windhager R, Sampath TK, Gupta M (2020) Autologous blood coagulum is a physiological carrier for BMP6 to induce new bone formation and promote posterolateral lumbar spine fusion in rabbits. J Tissue Eng Regen Med 14:147–159. https://doi.org/10.1002/term.2981

    Article  CAS  PubMed  Google Scholar 

  10. Chiari C, Grgurevic L, Bordukalo-Niksic T, Oppermann H, Valentinitsch A, Nemecek E, Staats K, Schreiner M, Trost C, Kolb A, Kainberger F, Pehar S, Milosevic M, Martinovic S, Peric M, Sampath TK, Vukicevic S, Windhager R (2020) Recombinant human BMP6 applied within autologous blood coagulum accelerates bone healing: randomized controlled trial in high tibial osteotomy patients. J Bone Miner Res. https://doi.org/10.1002/jbmr.4107

  11. Durdevic D, Vlahovic T, Pehar S, Miklic D, Oppermann H, Bordukalo-Niksic T, Gavrankapetanovic I, Jamakosmanovic M, Milosevic M, Martinovic S, Sampath TK, Peric M, Grgurevic L, Vukicevic S (2020) A novel autologous bone graft substitute comprised of rhBMP6 blood coagulum as carrier tested in a randomized and controlled phase I trial in patients with distal radial fractures. Bone 140:115551. https://doi.org/10.1016/j.bone.2020.115551

  12. Grgurevic L, Erjavec I, Gupta M, Pecin M, Bordukalo-Niksic T, Stokovic N, Vnuk D, Farkas V, Capak H, Milosevic M, Spoljar JB, Peric M, Vuckovic M, Maticic D, Windhager R, Oppermann H, Sampath TK, Vukicevic S (2020) Autologous blood coagulum containing rhBMP6 induces new bone formation to promote anterior lumbar interbody fusion (ALIF) and posterolateral lumbar fusion (PLF) of spine in sheep. Bone. https://doi.org/10.1016/j.bone.2020.115448

  13. Mroz TE, Joyce MJ, Lieberman IH, Steinmetz MP, Benzel EC, Wang JC (2009) The use of allograft bone in spine surgery: is it safe? Spine J 9:303–308. https://doi.org/10.1016/j.spinee.2008.06.452

    Article  PubMed  Google Scholar 

  14. Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485. https://doi.org/10.1016/j.biomaterials.2009.11.050

    Article  CAS  PubMed  Google Scholar 

  15. Louis-Ugbo J, Kim HS, Boden SD, Mayr MT, Li RC, Seeherman H, D’Augusta D, Blake C, Jiao A, Peckham S (2002) Retention of 125I-labeled recombinant human bone morphogenetic protein-2 by biphasic calcium phosphate or a composite sponge in a rabbit posterolateral spine arthrodesis model. J Orthop Res 20:1050–1059. https://doi.org/10.1016/S0736-0266(02)00011-6

    Article  CAS  PubMed  Google Scholar 

  16. Suh DY, Boden SD, Louis-Ugbo J, Mayr M, Murakami H, Kim HS, Minamide A, Hutton WC (2002) Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate. Spine (Phila Pa 1976) 27:353–360. https://doi.org/10.1097/00007632-200202150-00006

    Article  Google Scholar 

  17. Dohzono S, Imai Y, Nakamura H, Wakitani S, Takaoka K (2009) Successful spinal fusion by E. coli-derived BMP-2-adsorbed porous beta-TCP granules: a pilot study. Clin Orthop Relat Res 467:3206–3212. https://doi.org/10.1007/s11999-009-0960-1

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alam MI, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S (2001) Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials 22:1643–1651. https://doi.org/10.1016/s0142-9612(00)00322-7

    Article  CAS  PubMed  Google Scholar 

  19. Lee JH, Yu CH, Yang JJ, Baek HR, Lee KM, Koo TY, Chang BS, Lee CK (2012) Comparative study of fusion rate induced by different dosages of Escherichia coli-derived recombinant human bone morphogenetic protein-2 using hydroxyapatite carrier. Spine J 12:239–248. https://doi.org/10.1016/j.spinee.2012.01.013

    Article  PubMed  Google Scholar 

  20. Pelletier MH, Oliver RA, Christou C, Yu Y, Bertollo N, Irie H, Walsh WR (2014) Lumbar spinal fusion with beta-TCP granules and variable Escherichia coli-derived rhBMP-2 dose. Spine J 14:1758–1768. https://doi.org/10.1016/j.spinee.2014.01.043

    Article  PubMed  Google Scholar 

  21. Seeherman H, Wozney JM (2005) Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 16:329–345. https://doi.org/10.1016/j.cytogfr.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  22. Morisue H, Matsumoto M, Chiba K, Matsumoto H, Toyama Y, Aizawa M, Kanzawa N, Fujimi TJ, Uchida H, Okada I (2006) A novel hydroxyapatite fiber mesh as a carrier for recombinant human bone morphogenetic protein-2 enhances bone union in rat posterolateral fusion model. Spine (Phila Pa 1976) 31:1194–1200. https://doi.org/10.1097/01.brs.0000217679.46489.1b

    Article  Google Scholar 

  23. Stokovic N, Ivanjko N, Pecin M, Erjavec I, Karlovic S, Smajlovic A, Capak H, Milosevic M, Bubic Spoljar J, Vnuk D, Maticic D, Oppermann H, Sampath TK, Vukicevic S (2020) Evaluation of synthetic ceramics as compression resistant matrix to promote osteogenesis of autologous blood coagulum containing recombinant human bone morphogenetic protein 6 in rabbit posterolateral lumbar fusion model. Bone 140:115544. https://doi.org/10.1016/j.bone.2020.115544

    Article  CAS  PubMed  Google Scholar 

  24. Stokovic N, Ivanjko N, Erjavec I, Milosevic M, Oppermann H, Shimp L, Sampath KT, Vukicevic S (2020) Autologous bone graft substitute containing rhBMP6 within autologous blood coagulum and synthetic ceramics of different particle size determines the quantity and structural pattern of bone formed in a rat subcutaneous assay. Bone 115654. https://doi.org/10.1016/j.bone.2020.115654

  25. Erjavec I, Bordukalo-Niksic T, Brkljacic J, Grcevic D, Mokrovic G, Kesic M, Rogic D, Zavadoski W, Paralkar VM, Grgurevic L, Trkulja V, Cicin-Sain L, Vukicevic S (2016) Constitutively elevated blood serotonin is associated with bone loss and type 2 diabetes in rats. PLoS One 11:e0150102. https://doi.org/10.1371/journal.pone.0150102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung UW, Choi SY, Pang EK, Kim CS, Choi SH, Cho KS (2006) The effect of varying the particle size of beta tricalcium phosphate carrier of recombinant human bone morphogenetic protein-4 on bone formation in rat calvarial defects. J Periodontol 77:765–772. https://doi.org/10.1902/jop.2006.050268

    Article  CAS  PubMed  Google Scholar 

  27. Bae EB, Park KH, Shim JH, Chung HY, Choi JW, Lee JJ, Kim CH, Jeon HJ, Kang SS, Huh JB (2018) Efficacy of rhBMP-2 loaded PCL/beta-TCP/bdECM scaffold fabricated by 3D printing technology on bone regeneration. Biomed Res Int 2018:2876135. https://doi.org/10.1155/2018/2876135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park JC, So SS, Jung IH, Yun JH, Choi SH, Cho KS, Kim CS (2011) Induction of bone formation by Escherichia coli-expressed recombinant human bone morphogenetic protein-2 using block-type macroporous biphasic calcium phosphate in orthotopic and ectopic rat models. J Periodontal Res 46:682–690. https://doi.org/10.1111/j.1600-0765.2011.01390.x

    Article  CAS  PubMed  Google Scholar 

  29. Kim JW, Choi KH, Yun JH, Jung UW, Kim CS, Choi SH, Cho KS (2011) Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:298–306. https://doi.org/10.1016/j.tripleo.2010.10.025

    Article  PubMed  Google Scholar 

  30. Lee JH, Ryu MY, Baek HR, Lee KM, Seo JH, Lee HK, Ryu HS (2013) Effects of porous beta-tricalcium phosphate-based ceramics used as an E. coli-derived rhBMP-2 carrier for bone regeneration. J Mater Sci Mater Med 24:2117–2127. https://doi.org/10.1007/s10856-013-4967-5

    Article  CAS  PubMed  Google Scholar 

  31. Kim CS, Kim JI, Kim J, Choi SH, Chai JK, Kim CK, Cho KS (2005) Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials 26:2501–2507. https://doi.org/10.1016/j.biomaterials.2004.07.015

    Article  CAS  PubMed  Google Scholar 

  32. Liang G, Yang Y, Oh S, Ong JL, Zheng C, Ran J, Yin G, Zhou D (2005) Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice. Biomaterials 26:4265–4271. https://doi.org/10.1016/j.biomaterials.2004.10.035

    Article  CAS  PubMed  Google Scholar 

  33. Kato M, Namikawa T, Terai H, Hoshino M, Miyamoto S, Takaoka K (2006) Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Biomaterials 27:3927–3933. https://doi.org/10.1016/j.biomaterials.2006.03.013

    Article  CAS  PubMed  Google Scholar 

  34. Tazaki J, Murata M, Akazawa T, Yamamoto M, Ito K, Arisue M, Shibata T, Tabata Y (2009) BMP-2 release and dose-response studies in hydroxyapatite and beta-tricalcium phosphate. Biomed Mater Eng 19:141–146. https://doi.org/10.3233/BME-2009-0573

    Article  CAS  PubMed  Google Scholar 

  35. Peric M, Dumic-Cule I, Grcevic D, Matijasic M, Verbanac D, Paul R, Grgurevic L, Trkulja V, Bagi CM, Vukicevic S (2015) The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone 70:73–86. https://doi.org/10.1016/j.bone.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  36. Croes M, Kruyt MC, Groen WM, van Dorenmalen KMA, Dhert WJA, Oner FC, Alblas J (2018) Interleukin 17 enhances bone morphogenetic protein-2-induced ectopic bone formation. Sci Rep 8:7269. https://doi.org/10.1038/s41598-018-25564-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shockley KR, Lazarenko OP, Czernik PJ, Rosen CJ, Churchill GA, Lecka-Czernik B (2009) PPARgamma2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J Cell Biochem 106:232–246. https://doi.org/10.1002/jcb.21994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kang Q, Song WX, Luo Q, Tang N, Luo J, Luo X, Chen J, Bi Y, He BC, Park JK, Jiang W, Tang Y, Huang J, Su Y, Zhu GH, He Y, Yin H, Hu Z, Wang Y, Chen L, Zuo GW, Pan X, Shen J, Vokes T, Reid RR, Haydon RC, Luu HH, He TC (2009) A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 18:545–559. https://doi.org/10.1089/scd.2008.0130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

For animal studies, we thank Mirjana Marija Renic and Djurdjica Car for their excellent technical assistance. For biomechanical testing, we thank Sven Karlovic and Goran Bosanac (Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia) for the help in the conduction of experiment and data analysis. Special thanks to Jack Ratliff (Ratliff Histology Consultants LLC) for the excellent preparation of undecalcified histology sections.

Funding

This program was funded by the FP7 Health Program (FP7/2007-2013) under grant agreement HEALTH-F4-2011-279239 (Osteogrow), H2020 Health GA 779340 (OSTEOproSPINE), and European Regional Development Fund - Scientific Center of Excellence for Reproductive and Regenerative Medicine (project “Reproductive and regenerative medicine - exploration of new platforms and potentials,” GA KK.01.1.1.01.0008 funded by the EU through the ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slobodan Vukicevic.

Ethics declarations

Conflict of interest

SV, TKS, LG, CC, and HO have an issued patent WO2019076484A1 licensed to perForm Biologics. HO received grants and other from Genera Research during the study; LS is a part owner of CaP Biomaterials. TKS received grants and other from perForm Biologics during the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stokovic, N., Ivanjko, N., Milesevic, M. et al. Synthetic ceramic macroporous blocks as a scaffold in ectopic bone formation induced by recombinant human bone morphogenetic protein 6 within autologous blood coagulum in rats. International Orthopaedics (SICOT) 45, 1097–1107 (2021). https://doi.org/10.1007/s00264-020-04847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04847-9

Keywords

Navigation