Skip to main content

Advertisement

Log in

Cysteine cathepsins L and X differentially modulate interactions between myeloid-derived suppressor cells and tumor cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Increased proteolytic activity of cysteine cathepsins has long been known to facilitate malignant progression, and it has also been associated with tumor-promoting roles of myeloid-derived suppressor cells (MDSCs). Consequently, cysteine cathepsins have gained much attention as potential targets for cancer therapies. However, cross-talk between tumor cells and MDSCs needs to be taken into account when studying the efficacy of cathepsin inhibitors as anti-cancer agents. Here, we demonstrate the potential of the MDA-MB-231 breast cancer cell line to generate functional MDSCs from CD14+ cells of healthy human donors. During this transition to MDSCs, the overall levels of cysteine cathepsins increased, with the largest responses for cathepsins L and X. We used small-molecule inhibitors of cathepsins L and X (i.e., CLIK-148, Z9, respectively) to investigate their functional impact on tumor cells and immune cells in this co-culture system. Interactions with peripheral blood mononuclear cells reduced MDA-MB-231 cell invasion, while inhibition of cathepsin X activity by Z9 restored invasion. Inhibition of cathepsin L activity using CLIK-148 resulted in significantly increased CD8+ cytotoxicity. Of note, inhibition of cathepsins L and X in separate immune or tumor cells did not promote these functional changes. Together, our findings underlie the importance of tumor cell–immune cell interactions in the evaluation of the anti-cancer potential of cysteine cathepsin inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cat:

Cathepsin(s)

CFSE:

Carboxyfluorescein succinimidyl ester

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

IL:

Interleukin

MDSCs:

Myeloid-derived suppressor cells

PBMCs:

Peripheral blood mononuclear cells

PBS:

Phosphate-buffered saline

PG:

Prostaglandin

References

  1. Groth C, Hu X, Weber R et al (2019) Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer 120:16–25. https://doi.org/10.1038/s41416-018-0333-1

    Article  CAS  PubMed  Google Scholar 

  2. Cassetta L, Baekkevold ES, Brandau S et al (2019) Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunol Immunother 68:687–697. https://doi.org/10.1007/s00262-019-02302-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bruger AM, Dorhoi A, Esendagli G et al (2019) How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunol Immunother 68:631–644. https://doi.org/10.1007/s00262-018-2170-8

    Article  CAS  PubMed  Google Scholar 

  4. Kochan G (2016) Human MDSCs. In: Escors D, Talmadge JE, Breckpot K, Van Ginderachter JA, Kochan G (eds) Myeloid-derived suppressor cells and cancer. Springer briefs in immunology. Springer, Cham, pp 39–48

    Chapter  Google Scholar 

  5. Ostrand-Rosenberg S, Fenselau C (2018) Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J Immunol 200:422–431. https://doi.org/10.4049/jimmunol.1701019

    Article  CAS  PubMed  Google Scholar 

  6. Akkari L, Gocheva V, Kester JC et al (2014) Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes Dev 28:2134–2150. https://doi.org/10.1101/gad.249599.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Edgington-Mitchell LE, Rautela J, Duivenvoorden HM et al (2015) Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer. Oncotarget 6:8–10. https://doi.org/10.18632/oncotarget.4714

    Article  Google Scholar 

  8. Fonović M, Turk B (2014) Cysteine cathepsins and their potential in clinical therapy and biomarker discovery. PROTEOMICS - Clin Appl 8:416–426. https://doi.org/10.1002/prca.201300085

    Article  CAS  PubMed  Google Scholar 

  9. Salpeter SJ, Pozniak Y, Merquiol E et al (2015) A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression. Oncogene 34:6066–6078. https://doi.org/10.1038/onc.2015.51

    Article  CAS  PubMed  Google Scholar 

  10. Yang M, Liu J, Shao J et al (2014) Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Mol Cancer 13:43. https://doi.org/10.1186/1476-4598-13-43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gounaris E, Tung CH, Restaino C et al (2008) Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth. PLoS ONE 3:e2916. https://doi.org/10.1371/journal.pone.0002916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bruchard M, Mignot G, Derangère V et al (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19:57–64. https://doi.org/10.1038/nm.2999

    Article  CAS  PubMed  Google Scholar 

  13. Wu QD, Wang JH, Condron C et al (2001) Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 280:C814-22. https://doi.org/10.1152/ajpcell.2001.280.4.C814

    Article  PubMed  Google Scholar 

  14. Fonović UP, Mitrović A, Knez D et al (2017) Identification and characterization of the novel reversible and selective cathepsin X inhibitors. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-11935-1

    Article  CAS  Google Scholar 

  15. Katunuma N, Murata E, Kakegawa H et al (1999) Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo. FEBS Lett 458:6–10. https://doi.org/10.1016/S0014-5793(99)01107-2

    Article  CAS  PubMed  Google Scholar 

  16. Mirkovic B, Markelc B, Butinar M et al (2015) Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity. Oncotarget 6:19027–19042. https://doi.org/10.18632/oncotarget.3699

    Article  PubMed  PubMed Central  Google Scholar 

  17. Webb SR, Gascoigne NRJ (1994) T-cell activation by superantigens. Curr Opin Immunol 6:467–475. https://doi.org/10.1016/0952-7915(94)90129-5

    Article  CAS  PubMed  Google Scholar 

  18. Valiathan R, Lewis JE, Melillo AB et al (2012) Evaluation of a flow cytometry-based assay for natural killer cell activity in clinical settings. Scand J Immunol 75:455–462. https://doi.org/10.1111/j.1365-3083.2011.02667.x

    Article  CAS  PubMed  Google Scholar 

  19. Casacuberta-Serra S, Parés M, Golbano A et al (2017) Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes. Immunol Cell Biol 95:538–548. https://doi.org/10.1038/icb.2017.4

    Article  CAS  PubMed  Google Scholar 

  20. Obermajer N, Kalinski P (2012) Generation of myeloid-derived suppressor cells using prostaglandin E2. Transplant Res 1:15. https://doi.org/10.1186/2047-1440-1-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heine A, Held SAE, Schulte-Schrepping J et al (2017) Generation and functional characterization of MDSC-like cells. Oncoimmunology 6:e1295203. https://doi.org/10.1080/2162402X.2017.1295203

    Article  PubMed  PubMed Central  Google Scholar 

  22. Okada SL, Simmons RM, Franke-Welch S et al (2018) Conditioned media from the renal cell carcinoma cell line 786.O drives human blood monocytes to a monocytic myeloid-derived suppressor cell phenotype. Cell Immunol 323:49–58. https://doi.org/10.1016/j.cellimm.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  23. Lechner MG, Megiel C, Russell SM et al (2011) Functional characterization of human Cd33+ And Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl Med 9:90. https://doi.org/10.1186/1479-5876-9-90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Panni RZ, Sanford DE, Belt BA et al (2014) Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunol Immunother 63:513–528. https://doi.org/10.1007/s00262-014-1527-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodrigues JC, Gonzalez GC, Zhang L et al (2010) Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol 12:351–365. https://doi.org/10.1093/neuonc/nop023

    Article  CAS  PubMed  Google Scholar 

  26. Hou L, Cooley J, Swanson R et al (2015) The protease cathepsin L regulates Th17 cell differentiation. J Autoimmun 65:56–63. https://doi.org/10.1016/j.jaut.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pečar Fonović U (2009) Efficient removal of cathepsin L from active cathepsin X using immunoprecipitation technique. Acta Chim Slov 56:985–988

    Google Scholar 

  28. Greenbaum DC, Arnold WD, Lu F et al (2002) Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. Chem Biol 9:1085–1094. https://doi.org/10.1016/s1074-5521(02)00238-7

    Article  CAS  PubMed  Google Scholar 

  29. Jiang M, Chen J, Zhang W et al (2017) Interleukin-6 trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front Immunol 8:1840. https://doi.org/10.3389/fimmu.2017.01840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mao Y, Poschke I, Wennerberg E et al (2013) Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res 73:3877–3887. https://doi.org/10.1158/0008-5472.CAN-12-4115

    Article  CAS  PubMed  Google Scholar 

  31. Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 185:2273–2284. https://doi.org/10.4049/jimmunol.1000901

    Article  CAS  PubMed  Google Scholar 

  32. Elliott LA, Doherty GA, Sheahan K, Ryan EJ (2017) Human tumor-infiltrating myeloid cells: phenotypic and functional diversity. Front Immunol. https://doi.org/10.3389/fimmu.2017.00086

    Article  PubMed  PubMed Central  Google Scholar 

  33. Movahedi K, Guilliams M, Van den Bossche J et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244. https://doi.org/10.1182/blood-2007-07-099226

    Article  CAS  PubMed  Google Scholar 

  34. Idorn M, Kollgaard T, Kongsted P et al (2014) Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol Immunother 63:1177–1187. https://doi.org/10.1007/s00262-014-1591-2

    Article  CAS  PubMed  Google Scholar 

  35. OuYang L-Y, Wu X-J, Ye S-B et al (2015) Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. J Transl Med 13:47. https://doi.org/10.1186/s12967-015-0410-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen M-F, Kuan F-C, Yen T-C et al (2014) IL-6-stimulated CD11b+ CD14+ HLA-DR-myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus. Oncotarget 5:8716–8728. https://doi.org/10.18632/oncotarget.2368

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Zhang L, Wang H et al (2015) Tumor-induced CD14+HLA-DR−/low myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients. Cancer Immunol Immunother 64:389–399. https://doi.org/10.1007/s00262-014-1646-4

    Article  CAS  PubMed  Google Scholar 

  38. Banerjee K, Pru C, Pru JK, Resat H (2018) STAT3 knockdown induces tumor formation by MDA-MB-231 cells. Clin Oncol Res. https://doi.org/10.31487/j.COR.2018.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  39. Konjar Š, Sutton VR, Hoves S et al (2010) Human and mouse perforin are processed in part through cleavage by the lysosomal cysteine proteinase cathepsin L. Immunology 131:257–267. https://doi.org/10.1111/j.1365-2567.2010.03299.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yan X, Wu C, Chen T et al (2017) Cathepsin S inhibition changes regulatory T-cell activity in regulating bladder cancer and immune cell proliferation and apoptosis. Mol Immunol 82:66–74. https://doi.org/10.1016/j.molimm.2016.12.018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Matthew Bogyo (Stanford University) for the DCG-04 probe, and Christopher Berrie for critical review of the manuscript before submission.

Funding

This study was supported by the Research Agency of Republic of Slovenia (Grants P4-0127, J4-1776, J4-8227 and J4-6811, to JK).

Author information

Authors and Affiliations

Authors

Contributions

TJ performed the experiments and cooperated with UŠ on the work with the PBMCs. TJ analyzed the data and prepared the figures. TJ, AP, UPF, and JK designed the framework for the study. AP and UPF offered technical support. TJ drafted the paper, and the other co-authors (AP, UPF, UŠ, JK) revised and complemented its content.

Corresponding author

Correspondence to Janko Kos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Ethic approval for PBMCs No. 0120-279/2017-3.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 12655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakoš, T., Pišlar, A., Pečar Fonović, U. et al. Cysteine cathepsins L and X differentially modulate interactions between myeloid-derived suppressor cells and tumor cells. Cancer Immunol Immunother 69, 1869–1880 (2020). https://doi.org/10.1007/s00262-020-02592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02592-x

Keywords

Navigation