Advertisement

Abdominal Radiology

, Volume 43, Issue 11, pp 2893–2902 | Cite as

Use of magnetic resonance imaging in rectal cancer patients: Society of Abdominal Radiology (SAR) rectal cancer disease-focused panel (DFP) recommendations 2017

  • Marc J. Gollub
  • Supreeta Arya
  • Regina GH Beets-Tan
  • Gregory dePrisco
  • Mithat Gonen
  • Kartik Jhaveri
  • Zahra Kassam
  • Harmeet Kaur
  • David Kim
  • Andrea Knezevic
  • Elena Korngold
  • Chandana Lall
  • Neeraj Lalwani
  • D. Blair Macdonald
  • Courtney Moreno
  • Stephanie Nougaret
  • Perry Pickhardt
  • Shannon Sheedy
  • Mukesh Harisinghani
Article

Abstract

Purpose

To propose guidelines based on an expert-panel-derived unified approach to the technical performance, interpretation, and reporting of MRI for baseline and post-treatment staging of rectal carcinoma.

Methods

A consensus-based questionnaire adopted with permission and modified from the European Society of Gastrointestinal and Abdominal Radiologists was sent to a 17-member expert panel from the Rectal Cancer Disease-Focused Panel of the Society of Abdominal Radiology containing 268 question parts. Consensus on an answer was defined as ≥ 70% agreement. Answers not reaching consensus (< 70%) were noted.

Results

Consensus was reached for 87% of items from which recommendations regarding patient preparation, technical performance, pulse sequence acquisition, and criteria for MRI assessment at initial staging and restaging exams and for MRI reporting were constructed.

Conclusion

These expert consensus recommendations can be used as guidelines for primary and post-treatment staging of rectal cancer using MRI.

Keywords

Rectal MRI Rectal cancer Expert panel Consensus recommendations White paper 

Notes

Acknowledgements

The authors would like to thank Drs. Doenja Lambregts and Monique Maas for help with the European questionnaire. We would also like to thank several members of the DFP that were not on the expert panel but contributed to the formation of the dictation templates including Drs. Bruce Minsky, Martin Weiser, Raj Paspulati, Dhakshin Ganeshan, Naomi Campbell, and Randy Ernst. Grant Support: National Institutes of Health (R25CA020449).

Compliance with ethical standards

Funding

This study was funded by the National Institutes of Health (R25CA020449).

Conflict of interest

All authors report nothing to disclose and no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

261_2018_1642_MOESM1_ESM.xls (218 kb)
Supplementary material 1 (XLS 217 kb)
261_2018_1642_MOESM2_ESM.pdf (500 kb)
Supplementary material 2 (PDF 499 kb)
261_2018_1642_MOESM3_ESM.pdf (474 kb)
Supplementary material 3 (PDF 473 kb)

References

  1. 1.
    Valentini V, Aristei C, Glimelius B, et al. (2009) Multidisciplinary rectal cancer management: 2nd european rectal cancer consensus conference (EURECA-CC2). Radiother Oncol 92(2):148–163.  https://doi.org/10.1016/j.radonc.2009.06.027 CrossRefPubMedGoogle Scholar
  2. 2.
    Glimelius B, Pahlman L, Cervantes A (2010) Rectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 21(Suppl 5):v82–v86.  https://doi.org/10.1093/annonc/mdq170 CrossRefPubMedGoogle Scholar
  3. 3.
    Lahaye MJ, Engelen SM, Nelemans PJ, et al. (2005) Imaging for predicting the risk factors–the circumferential resection margin and nodal disease-of local recurrence in rectal cancer: a meta-analysis. Semin Ultrasound CT MR 26(4):259–268CrossRefGoogle Scholar
  4. 4.
    Maas M, Beets-Tan RG, Lambregts DM, et al. (2011) Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 29(35):4633–4640.  https://doi.org/10.1200/jco.2011.37.7176 CrossRefPubMedGoogle Scholar
  5. 5.
    Lezoche G, Baldarelli M, Guerrieri M, et al. (2008) A prospective randomized study with a 5-year minimum follow-up evaluation of transanal endoscopic microsurgery versus laparoscopic total mesorectal excision after neoadjuvant therapy. Surg Endosc 22(2):352–358.  https://doi.org/10.1007/s00464-007-9596-y CrossRefPubMedGoogle Scholar
  6. 6.
    Habr-Gama A, Gama-Rodrigues J, Sao Juliao GP, et al. (2014) Local recurrence after complete clinical response and watch and wait in rectal cancer after neoadjuvant chemoradiation: impact of salvage therapy on local disease control. Int J Radiat Oncol Biol Phys 88(4):822–828.  https://doi.org/10.1016/j.ijrobp.2013.12.012 CrossRefPubMedGoogle Scholar
  7. 7.
    Martens MH, Maas M, Heijnen LA, et al. (2016) Long-term outcome of an organ preservation program after neoadjuvant treatment for rectal cancer. J Natl Cancer Inst .  https://doi.org/10.1093/jnci/djw171 CrossRefPubMedGoogle Scholar
  8. 8.
    Appelt AL, Ploen J, Harling H, et al. (2015) High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: a prospective observational study. Lancet Oncol 16(8):919–927.  https://doi.org/10.1016/s1470-2045(15)00120-5 CrossRefPubMedGoogle Scholar
  9. 9.
    Beets-Tan RGH, Lambregts DMJ, Mass M, et al. (2013) Magnetic resonance imaging for the clinical management of rectal cancer patients: recommendations from the 2012 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol 23(9):2522–2531.  https://doi.org/10.1007/s00330-013-2864-4 CrossRefPubMedGoogle Scholar
  10. 10.
    Beets-Tan RGH, Lambregts DMJ, Mass M, et al. (2018) Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol 28(4):1465–1475.  https://doi.org/10.1007/s00330-017-5026-2 CrossRefPubMedGoogle Scholar
  11. 11.
    Cascade PN (2000) The American College of Radiology. ACR Appropriateness Criteria project. Radiology 214(Suppl):3–46.  https://doi.org/10.1148/radiology.214.1.r00ja5510 CrossRefPubMedGoogle Scholar
  12. 12.
    Kahn CE, Heilbrun ME, Applegate KE (2013) From guidelines to practice: how reporting templates promote the use of radiology practice guidelines. J Am Coll Radiol 10(4):268–273.  https://doi.org/10.1016/j.jacr.2012.09.025 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Al-Sukhni E, Messenger DE, Charles Victor J, McLeod RS, Kennedy ED (2013) Do MRI reports contain adequate preoperative staging information for end users to Make appropriate treatment decisions for rectal cancer? Ann Surg Oncol 20(4):1148–1155.  https://doi.org/10.1245/s10434-012-2738-z CrossRefPubMedGoogle Scholar
  14. 14.
    Sahni VA, Silveira PC, Sainani NI, Khorasani R (2015) Impact of a structured report template on the quality of MRI reports for rectal cancer staging. Am J Roentgenol 205(3):584–588.  https://doi.org/10.2214/AJR.14.14053 CrossRefGoogle Scholar
  15. 15.
    Norenberg D, Sommer WH, Thasler W, et al. (2017) Structured reporting of rectal magnetic resonance imaging in suspected primary rectal cancer: potential benefits for surgical planning and interdisciplinary communication. Investig Radiol 52(4):232–239.  https://doi.org/10.1097/RLI.0000000000000336 CrossRefGoogle Scholar
  16. 16.
    Dobranowski J (2015) Structured reporting in cancer imaging: reaching the quality dimension in communication. HealthManagement 15(4):268–271Google Scholar
  17. 17.
    Al-Sukhni E, Milto L, Fruitman M, Brown G, Schmocker S, Kennedy E (2014) MR Rectal Tumour.Google Scholar
  18. 18.
    Cancer KSGfR (2017) Essential items for structured reporting of rectal cancer MRI: 2016 consensus recommendation from the korean society of abdominal radiology. Korean J Radiol 18(1):132–151.  https://doi.org/10.3348/kjr.2017.18.1.132 CrossRefGoogle Scholar
  19. 19.
    Maas M, Lambregts DM, Nelemans PJ, et al. (2015) Assessment of clinical complete response after chemoradiation for rectal cancer with digital rectal examination, endoscopy, and MRI: selection for organ-saving treatment. Ann Surg Oncol 22(12):3873–3880.  https://doi.org/10.1245/s10434-015-4687-9 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Martens MH, Maas M, Heijnen LA, et al. (2016) Long-term outcome of an organ preservation program after neoadjuvant treatment for rectal cancer. JNCI 108(12):dwj171.  https://doi.org/10.1093/jnci/djw171 CrossRefGoogle Scholar
  21. 21.
    Brown G, Richards CJ, Newcombe RG, et al. (1999) Rectal carcinoma: thin-section MR imaging for staging in 28 patients. Radiology 211(1):215–222.  https://doi.org/10.1148/radiology.211.1.r99ap35215 CrossRefPubMedGoogle Scholar
  22. 22.
    Hugen N, van de Velde CJ, Bosch SL, et al. (2015) Modern treatment of rectal cancer closes the gap between common adenocarcinoma and mucinous carcinoma. Ann Surg Oncol 22(8):2669–2676.  https://doi.org/10.1245/s10434-014-4339-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Oberholzer K, Menig M, Kreft A, et al. (2012) Rectal cancer: mucinous carcinoma on magnetic resonance imaging indicates poor response to neoadjuvant chemoradiation. Int J Radiat Oncol Biol Phys 82(2):842–848.  https://doi.org/10.1016/j.ijrobp.2010.08.057 CrossRefPubMedGoogle Scholar
  24. 24.
    Chand M, Yu S, Swift RI, Brown G (2014) Mucinous carcinoma of the rectum: a distinct clinicopathological entity. Tech Coloproctol 18(4):335–344.  https://doi.org/10.1007/s10151-013-1099-3 CrossRefPubMedGoogle Scholar
  25. 25.
    Nagtegaal ID, Marijnen CA, Kranenbarg EK, van de Velde CJ, van Krieken JH (2002) Circumferential margin involvement is still an important predictor of local recurrence in rectal carcinoma: not one millimeter but two millimeters is the limit. Am J Surg Pathol 26(3):350–357CrossRefGoogle Scholar
  26. 26.
    Sassen S, de Booij M, Sosef M, et al. (2013) Locally advanced rectal cancer: is diffusion weighted MRI helpful for the identification of complete responders (ypT0N0) after neoadjuvant chemoradiation therapy? Eur Radiol 23(12):3440–3449.  https://doi.org/10.1007/s00330-013-2956-1 CrossRefPubMedGoogle Scholar
  27. 27.
    Lahaye MJ, Beets GL, Engelen SME, et al. (2009) Locally advanced rectal cancer: MR imaging for restaging after neoadjuvant radiation therapy with concomitant chemotherapy part II. What are the criteria to predict involved lymph nodes? Radiology 252(1):81–91.  https://doi.org/10.1148/radiol.2521081364 CrossRefPubMedGoogle Scholar
  28. 28.
    Heijnen LA, Maas M, Beets-Tan RG, et al. (2016) Nodal staging in rectal cancer: why is restaging after chemoradiation more accurate than primary nodal staging? Int J Colorectal Dis 31(6):1157–1162.  https://doi.org/10.1007/s00384-016-2576-8 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Perez RO, Pereira DD, Proscurshim I, et al. (2009) Lymph node size in rectal cancer following neoadjuvant chemoradiation–can we rely on radiologic nodal staging after chemoradiation? Dis Colon Rectum 52(7):1278–1284.  https://doi.org/10.1007/DCR.0b013e3181a0af4b CrossRefPubMedGoogle Scholar
  30. 30.
    Helmer-Hirschberg O (1967) Analysis of the future: the Delphi method. Santa Monica: The Rand Corporation, p 11Google Scholar
  31. 31.
    Diamond IR, Grant RC, Feldman BM, et al. (2014) Defining consensus: a systematic review recommends methodologic criteria for reporting of Delphi studies. J Clin Epidemiol 67(4):401–409.  https://doi.org/10.1016/j.jclinepi.2013.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bipat S, Glas AS, Slors FJ, et al. (2004) Rectal cancer: local staging and assessment of lymph node involvement with endoluminal US, CT, and MR imaging–a meta-analysis. Radiology 232(3):773–783.  https://doi.org/10.1148/radiol.2323031368 CrossRefPubMedGoogle Scholar
  33. 33.
    Marone P, de Bellis M, D’Angelo V, et al. (2015) Role of endoscopic ultrasonography in the loco-regional staging of patients with rectal cancer. World J Gastrointest Endosc 7(7):688–701.  https://doi.org/10.4253/wjge.v7.i7.688 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li XT, Zhang XY, Sun YS, Tang L, Cao K (2016) Evaluating rectal tumor staging with magnetic resonance imaging, computed tomography, and endoluminal ultrasound: a meta-analysis. Medicine (Baltimore) 95(44):e5333.  https://doi.org/10.1097/MD.0000000000005333 CrossRefGoogle Scholar
  35. 35.
    Kim SH, Lee JM, Hong SH, et al. (2009) Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy. Radiology 253(1):116–125.  https://doi.org/10.1148/radiol.2532090027 CrossRefPubMedGoogle Scholar
  36. 36.
    Lambregts DM, Vandecaveye V, Barbaro B, et al. (2011) Diffusion-weighted MRI for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol 18(8):2224–2231.  https://doi.org/10.1245/s10434-011-1607-5 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Song I, Kim SH, Lee SJ, et al. (2012) Value of diffusion-weighted imaging in the detection of viable tumour after neoadjuvant chemoradiation therapy in patients with locally advanced rectal cancer: comparison with T2 weighted and PET/CT imaging. Br J Radiol 85(1013):577–586.  https://doi.org/10.1259/bjr/68424021 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    van der Paardt MP, Zagers MB, Beets-Tan RG, Stoker J, Bipat S (2013) Patients who undergo preoperative chemoradiotherapy for locally advanced rectal cancer restaged by using diagnostic MR imaging: a systematic review and meta-analysis. Radiology 269(1):101–112.  https://doi.org/10.1148/radiol.13122833 CrossRefPubMedGoogle Scholar
  39. 39.
    Maas M, Lambregts DMJ, Lahaye MJ, et al. (2012) T-staging of rectal cancer: accuracy of 3.0 Tesla MRI compared with 1.5 Tesla. Abdom Imaging 37(3):475–481.  https://doi.org/10.1007/s00261-011-9770-5 CrossRefPubMedGoogle Scholar
  40. 40.
    Saremi F, Jalili M, Sefidbakht S, et al. (2011) Diffusion-weighted imaging of the abdomen at 3 T: image quality comparison with 1.5-T magnet using 3 different imaging sequences. J Comput Assist Tomogr 35(3):317–325.  https://doi.org/10.1097/RCT.0b013e318213ccb0 CrossRefPubMedGoogle Scholar
  41. 41.
    Slater A, Halligan S, Taylor SA, Marshall M (2006) Distance between the rectal wall and mesorectal fascia measured by MRI: effect of rectal distension and implications for preoperative prediction of a tumour-free circumferential resection margin. Clin Radiol 61(1):65–70.  https://doi.org/10.1016/j.crad.2005.08.010 CrossRefPubMedGoogle Scholar
  42. 42.
    Dal Lago A, Minetti AE, Biondetti P, Corsetti M, Basilisco G (2005) Magnetic resonance imaging of the rectum during distension. Dis Colon Rectum 48(6):1220–1227.  https://doi.org/10.1007/s10350-004-0933-0 CrossRefGoogle Scholar
  43. 43.
    Van Griethuysen JJM, Bus, E., Hauptmann, M. et al. (2017) Air artefacts on diffusion-weighted MRI of the rectum: effect of applying a rectal micro-enema. Insights into Imaging ECR 2017—BOOK OF ABSTRACTS 8(1):S187.  https://doi.org/10.1007/s13244-017-0546-5
  44. 44.
    Lim C, Quon J, McInnes M, et al. (2015) Does a cleansing enema improve image quality of 3T surface coil multiparametric prostate MRI? J Magn Reson Imaging 42(3):689–697.  https://doi.org/10.1002/jmri.24833 CrossRefPubMedGoogle Scholar
  45. 45.
    Kim SH, Lee JY, Lee JM, Han JK, Choi BI (2011) Apparent diffusion coefficient for evaluating tumour response to neoadjuvant chemoradiation therapy for locally advanced rectal cancer. Eur Radiol 21(5):987–995.  https://doi.org/10.1007/s00330-010-1989-y CrossRefPubMedGoogle Scholar
  46. 46.
    Palmucci S, Piccoli M, Piana S, et al. (2017) Diffusion MRI for rectal cancer staging: aDC measurements before and after ultrasonographic gel lumen distension. Eur J Radiol 86:119–126.  https://doi.org/10.1016/j.ejrad.2016.11.017 CrossRefPubMedGoogle Scholar
  47. 47.
    Ye F, Zhang H, Liang X, et al. (2016) JOURNAL CLUB: preoperative MRI evaluation of primary rectal cancer: Intrasubject comparison with and without rectal distention. AJR Am J Roentgenol 207(1):32–39.  https://doi.org/10.2214/ajr.15.15383 CrossRefPubMedGoogle Scholar
  48. 48.
    Stijns RCH STJ, de Wilt JHW, Fütterer JJ, Beets-Tan RGH (2018) The influence of endorectal filling on rectal cancer staging with MRI. Br J RadiolGoogle Scholar
  49. 49.
    Shihab OC, Moran BJ, Heald RJ, Quirke P, Brown G (2009) MRI staging of low rectal cancer. Eur Radiol 19(3):643–650.  https://doi.org/10.1007/s00330-008-1184-6 CrossRefPubMedGoogle Scholar
  50. 50.
    van der Pol CB, Shabana WM, McInnes MD, Schieda N (2015) High-resolution T2-weighted (T2W) oblique plane turbo spin-echo (TSE) MRI for rectal adenocarcinoma staging. Clin Imaging 39(4):627–631.  https://doi.org/10.1016/j.clinimag.2015.01.014 CrossRefPubMedGoogle Scholar
  51. 51.
    Scala D, Niglio A, Pace U, et al. (2016) Laparoscopic intersphincteric resection: indications and results. Updates Surg 68(1):85–91.  https://doi.org/10.1007/s13304-016-0351-6 CrossRefPubMedGoogle Scholar
  52. 52.
    Staderini F, Foppa C, Minuzzo A, et al. (2016) Robotic rectal surgery: state of the art. World J Gastrointest Oncol 8(11):757–771.  https://doi.org/10.4251/wjgo.v8.i11.757 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ramage L, McLean P, Simillis C, et al. (2018) Functional outcomes with handsewn versus stapled anastomoses in the treatment of ultralow rectal cancer. Updates Surg .  https://doi.org/10.1007/s13304-017-0507-z CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gollub MJ, Gultekin DH, Akin O, et al. (2012) Dynamic contrast enhanced-MRI for the detection of pathological complete response to neoadjuvant chemotherapy for locally advanced rectal cancer. Eur Radiol 22(4):821–831.  https://doi.org/10.1007/s00330-011-2321-1 CrossRefPubMedGoogle Scholar
  55. 55.
    Tong T, Sun Y, Gollub MJ, et al. (2015) Dynamic contrast-enhanced MRI: use in predicting pathological complete response to neoadjuvant chemoradiation in locally advanced rectal cancer. J Magn Reson Imaging 42(3):673–680.  https://doi.org/10.1002/jmri.24835 CrossRefPubMedGoogle Scholar
  56. 56.
    Martens MH, Subhani S, Heijnen LA, et al. (2015) Can perfusion MRI predict response to preoperative treatment in rectal cancer? Radiother Oncol 114(2):218–223.  https://doi.org/10.1016/j.radonc.2014.11.044 CrossRefPubMedGoogle Scholar
  57. 57.
    Kim SH, Lee JM, Gupta SN, Han JK, Choi BI (2014) Dynamic contrast-enhanced MRI to evaluate the therapeutic response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer. J Magn Reson Imaging 40(3):730–737.  https://doi.org/10.1002/jmri.24387 CrossRefPubMedGoogle Scholar
  58. 58.
    Corines MJ, Nougaret S, Weiser MR, Khan M, Gollub MJ (2018) Gadolinium-based contrast agent during pelvic MRI: contribution to patient management in rectal cancer. Dis Colon Rectum 61(2):193–201.  https://doi.org/10.1097/dcr.0000000000000925 CrossRefPubMedGoogle Scholar
  59. 59.
    Gollub MJ, Tong T, Weiser M, et al. (2017) Limited accuracy of DCE-MRI in identification of pathological complete responders after chemoradiotherapy treatment for rectal cancer. Eur Radiol 27(4):1605–1612.  https://doi.org/10.1007/s00330-016-4493-1 CrossRefPubMedGoogle Scholar
  60. 60.
    Gollub MJ, Lakhman Y, McGinty K, et al. (2015) Does gadolinium-based contrast material improve diagnostic accuracy of local invasion in rectal cancer MRI? A multireader study. AJR Am J Roentgenol 204(2):W160–W167.  https://doi.org/10.2214/ajr.14.12599 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gollub MJ, Cao K, Gultekin DH, et al. (2013) Prognostic aspects of DCE-MRI in recurrent rectal cancer. Eur Radiol 23(12):3336–3344.  https://doi.org/10.1007/s00330-013-2984-x CrossRefPubMedGoogle Scholar
  62. 62.
    Dijkhoff RAP, Beets-Tan RGH, Lambregts DMJ, Beets GL, Maas M (2017) Value of DCE-MRI for staging and response evaluation in rectal cancer: a systematic review. Eur J Radiol 95:155–168.  https://doi.org/10.1016/j.ejrad.2017.08.009 CrossRefPubMedGoogle Scholar
  63. 63.
    Petrillo A, Fusco R, Petrillo M, et al. (2017) Standardized index of shape (DCE-MRI) and standardized uptake value (PET/CT): two quantitative approaches to discriminate chemo-radiotherapy locally advanced rectal cancer responders under a functional profile. Oncotarget 8(5):8143–8153.  https://doi.org/10.18632/oncotarget.14106 CrossRefPubMedGoogle Scholar
  64. 64.
    Joye I, Deroose CM, Vandecaveye V, Haustermans K (2014) The role of diffusion-weighted MRI and 18F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol 113(2):158–165.  https://doi.org/10.1016/j.radonc.2014.11.026 CrossRefPubMedGoogle Scholar
  65. 65.
    Lambregts DM, Maas M, Riedl RG, et al. (2011) Value of ADC measurements for nodal staging after chemoradiation in locally advanced rectal cancer-a per lesion validation study. Eur Radiol 21(2):265–273.  https://doi.org/10.1007/s00330-010-1937-x CrossRefPubMedGoogle Scholar
  66. 66.
    Mir N, Sohaib SA, Collins D, Koh DM (2010) Fusion of high b-value diffusion-weighted and T2-weighted MR images improves identification of lymph nodes in the pelvis. J Med Imaging Radiat Oncol 54(4):358–364.  https://doi.org/10.1111/j.1754-9485.2010.02182.x CrossRefPubMedGoogle Scholar
  67. 67.
    Lambregts DM, Rao SX, Sassen S, et al. (2015) MRI and diffusion-weighted MRI volumetry for identification of complete tumor responders after preoperative chemoradiotherapy in patients with rectal cancer: a Bi-institutional Validation Study. Ann Surg 262(6):1034–1039.  https://doi.org/10.1097/sla.0000000000000909 CrossRefPubMedGoogle Scholar
  68. 68.
    Joye I, Debucquoy A, Deroose CM, et al. (2017) Quantitative imaging outperforms molecular markers when predicting response to chemoradiotherapy for rectal cancer. Radiother Oncol 124(1):104–109.  https://doi.org/10.1016/j.radonc.2017.06.013 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Roth ES, Fetzer DT, Barron BJ, et al. (2009) Does colon cancer ever metastasize to bone first? a temporal analysis of colorectal cancer progression. BMC Cancer 9:274.  https://doi.org/10.1186/1471-2407-9-274 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Vargas HA, Schor-Bardach R, Long N, et al. (2017) Prostate cancer bone metastases on staging prostate MRI: prevalence and clinical features associated with their diagnosis. Abdom Radiol (NY) 42(1):271–277.  https://doi.org/10.1007/s00261-016-0851-3 CrossRefGoogle Scholar
  71. 71.
    Beets-Tan RG, Beets GL, Vliegen RF, et al. (2001) Accuracy of magnetic resonance imaging in prediction of tumour-free resection margin in rectal cancer surgery. Lancet 357(9255):497–504CrossRefGoogle Scholar
  72. 72.
    Group MS (2006) Diagnostic accuracy of preoperative magnetic resonance imaging in predicting curative resection of rectal cancer: prospective observational study. BMJ (Clinical Research ed) 333(7572):779.  https://doi.org/10.1136/bmj.38937.646400.55 CrossRefGoogle Scholar
  73. 73.
    Brown G, Richards CJ, Bourne MW, et al. (2003) Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. Radiology 227(2):371–377.  https://doi.org/10.1148/radiol.2272011747 CrossRefPubMedGoogle Scholar
  74. 74.
    National working group gastrointestinal tumours (2014) National Guideline on Rectal Cancer, version 3.0. https://www.oncoline.nl
  75. 75.
    Kono Y, Togashi K, Utano K, et al. (2015) Lymph node size alone is not an accurate predictor of metastases in rectal cancer: a node-for-node comparative study of specimens and histology. Am Surg 81(12):1263–1271PubMedGoogle Scholar
  76. 76.
    Smith NJ, Barbachano Y, Norman AR, et al. (2008) Prognostic significance of magnetic resonance imaging-detected extramural vascular invasion in rectal cancer. Br J Surg 95(2):229–236.  https://doi.org/10.1002/bjs.5917 CrossRefPubMedGoogle Scholar
  77. 77.
    Chand M, Siddiqui MR, Swift I, Brown G (2016) Systematic review of prognostic importance of extramural venous invasion in rectal cancer. World J Gastroenterol 22(4):1721–1726.  https://doi.org/10.3748/wjg.v22.i4.1721 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Tripathi P, Rao SX, Zeng MS (2017) Clinical value of MRI-detected extramural venous invasion in rectal cancer. J Dig Dis 18(1):2–12.  https://doi.org/10.1111/1751-2980.12439 CrossRefPubMedGoogle Scholar
  79. 79.
    Lee ES, Kim MJ, Park SC, et al. (2018) Magnetic resonance imaging-detected extramural venous invasion in rectal cancer before and after preoperative chemoradiotherapy: diagnostic performance and prognostic significance. Eur Radiol 28(2):496–505.  https://doi.org/10.1007/s00330-017-4978-6 CrossRefPubMedGoogle Scholar
  80. 80.
    Lambregts DMJ, van Heeswijk MM, Delli Pizzi A, et al. (2017) Diffusion-weighted MRI to assess response to chemoradiotherapy in rectal cancer: main interpretation pitfalls and their use for teaching. Eur Radiol 27(10):4445–4454.  https://doi.org/10.1007/s00330-017-4830-z CrossRefPubMedGoogle Scholar
  81. 81.
    van Heeswijk MM, Lambregts DM, Palm WM, et al. (2017) DWI for assessment of rectal cancer nodes after chemoradiotherapy: is the absence of nodes at DWI proof of a negative nodal status? AJR Am J Roentgenol 208(3):W79–W84.  https://doi.org/10.2214/AJR.16.17117 CrossRefPubMedGoogle Scholar
  82. 82.
    Ryan JE, Warrier SK, Lynch AC, et al. (2016) Predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review. Colorectal Dis 18(3):234–246.  https://doi.org/10.1111/codi.13207 CrossRefPubMedGoogle Scholar
  83. 83.
    Sathyakumar K, Chandramohan A, Masih D, et al. (2016) Best MRI predictors of complete response to neoadjuvant chemoradiation in locally advanced rectal cancer. Br J Radiol 89(1060):20150328.  https://doi.org/10.1259/bjr.20150328 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Park MJ, Kim SH, Lee SJ, Jang KM, Rhim H (2011) Locally advanced rectal cancer: added value of diffusion-weighted MR imaging for predicting tumor clearance of the mesorectal fascia after neoadjuvant chemotherapy and radiation therapy. Radiology 260(3):771–780.  https://doi.org/10.1148/radiol.11102135 CrossRefPubMedGoogle Scholar
  85. 85.
    PROSPECT: chemotherapy alone or chemotherapy plus radiation therapy in treating patients with locally advanced rectal cancer undergoing surgery. https://ClinicalTrials.gov/show/NCT01515787,
  86. 86.
    Rymer B, Curtis NJ, Siddiqui MR, Chand M (2016) FDG PET/CT can assess the response of locally advanced rectal cancer to neoadjuvant chemoradiotherapy: evidence from meta-analysis and systematic review. Clin Nucl Med 41(5):371–375.  https://doi.org/10.1097/RLU.0000000000001166 CrossRefPubMedGoogle Scholar
  87. 87.
    Nougaret S, Rouanet P, Molinari N, et al. (2012) MR volumetric measurement of low rectal cancer helps predict tumor response and outcome after combined chemotherapy and radiation therapy. Radiology 263(2):409–418.  https://doi.org/10.1148/radiol.12111263 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marc J. Gollub
    • 1
  • Supreeta Arya
    • 2
  • Regina GH Beets-Tan
    • 3
  • Gregory dePrisco
    • 4
  • Mithat Gonen
    • 5
  • Kartik Jhaveri
    • 6
  • Zahra Kassam
    • 7
  • Harmeet Kaur
    • 8
  • David Kim
    • 9
  • Andrea Knezevic
    • 5
  • Elena Korngold
    • 10
  • Chandana Lall
    • 11
  • Neeraj Lalwani
    • 12
  • D. Blair Macdonald
    • 13
  • Courtney Moreno
    • 14
  • Stephanie Nougaret
    • 15
  • Perry Pickhardt
    • 9
  • Shannon Sheedy
    • 16
  • Mukesh Harisinghani
    • 17
  1. 1.Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Tata Memorial CentreMumbaiIndia
  3. 3.Netherlands Cancer InstituteAmsterdamNetherlands
  4. 4.Baylor University Medical CenterDallasUSA
  5. 5.Department of Biostatistics and EpidemiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  6. 6.University of Toronto University Health NetworkTorontoCanada
  7. 7.Schullich School of MedicineWestern UniversityLondonCanada
  8. 8.The University of Texas MD Anderson Cancer CenterHoustonUSA
  9. 9.University of Wisconsin School of Medicine and Public HealthMadisonUSA
  10. 10.Oregon Health and Science UniversityPortlandUSA
  11. 11.UC Irvine HealthOrangeUSA
  12. 12.Department of Radiology, Section of Abdominal ImagingWake Forest University and Baptist Medical CenterWinston-SalemUSA
  13. 13.University of Ottowa Medical CenterOttawaCanada
  14. 14.Emory University School of MedicineAtlantaUSA
  15. 15.IRCM INSERM U1194, SIRICMontpellierFrance
  16. 16.Mayo Clinic of RochesterRochesterUSA
  17. 17.Massachusetts General HospitalBostonUSA

Personalised recommendations