Skip to main content
Log in

Imaging of cardiac fibroblast activation in patients with chronic thromboembolic pulmonary hypertension

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to explore the association of cardiac fibroblast activation with clinical parameters and cardiovascular magnetic resonance (CMR) imaging parameters in patients with chronic thromboembolic pulmonary hypertension (CTEPH).

Methods

Thirteen CTEPH patients were prospectively enrolled. All of the patients underwent cardiac 68Gallium-labelled fibroblast activation protein inhibitor (68 Ga-FAPI-04)-positron emission tomography/computed tomography (PET/CT), right heart catheterisation, and echocardiography, and 11 of them additionally underwent CMR. Thirteen control subjects were selected to establish the normal range of cardiac 68 Ga-FAPI-04 uptake. Cardiac 68 Ga-FAPI-04 uptake higher than that in the blood pool was defined as abnormal. The global and segmental maximum standardised uptake values (SUVmax) of the right ventricle (RV) were measured and further expressed as target-to-background ratio (TBRRV) with left ventricular lateral wall activity as background. Late gadolinium enhancement (LGE) was visually evaluated, and native-T1 times, enhanced-T1 times, and extracellular volume (ECV) were quantitatively measured.

Results

Ten CTEPH patients (77%) had abnormal 68 Ga-FAPI-04 uptake in RV, mainly located in the free wall, which was significantly higher than that in controls (TBRRV: 2.4 ± 0.9 vs 1.0 ± 0.1, P < 0.001). The TBRRV correlated positively with the thickness of RV wall (r = 0.815, P = 0.001) and inversely with RV fraction area change (RVFAC) (r =  − 0.804, P = 0.001) and tricuspid annular plane systolic excursion (TAPSE) (r =  − 0.678, P = 0.011). No correlation was found between 68 Ga-FAPI-04 activity and CMR imaging parameters.

Conclusion

Fibroblast activation in CTEPH, measured by 68 Ga-FAPI-04 imaging, is mainly localised in the RV free wall. Enhanced fibroblast activation reflects the thickening of the RV wall and decreased RV contractile function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Code availability

Not applicable.

References

  1. van de Veerdonk MC, Bogaard HJ, Voelkel NF. The right ventricle and pulmonary hypertension. Heart Fail Rev. 2016;21(3):259–71. https://doi.org/10.1007/s10741-016-9526-y.

    Article  PubMed  Google Scholar 

  2. Delcroix M, Vonk Noordegraaf A, Fadel E, Lang I, Simonneau G, Naeije R. Vascular and right ventricular remodeling in chronic thromboembolic pulmonary hypertension. Eur Respir J. 2013;41(1):224–32. https://doi.org/10.1183/09031936.00047712.

    Article  PubMed  Google Scholar 

  3. Asosingh K, Erzurum S. Mechanisms of right heart disease in pulmonary hypertension (2017 Grover Conference Series). Pulm Circ. 2018;8(1):2045893217753121. https://doi.org/10.1177/2045893217753121.

    Article  CAS  PubMed  Google Scholar 

  4. Rain S, Handoko ML, Trip P, Gan CT, Westerhof N, Stienen GJ, Paulus WJ, Ottenheijm CA, Marcus JT, Dorfmüller P, Guignabert C, Humbert M, Macdonald P, Dos Remedios C, Postmus PE, Saripalli C, Hidalgo CG, Granzier HL, Vonk-Noordegraaf A, van der Velden J, de Man FS. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation. 2013;128(1):2016–25. https://doi.org/10.1161/CIRCULATIONAHA.113.001873.

    Article  CAS  PubMed  Google Scholar 

  5. Trip P, Rain S, Handoko ML, van der Bruggen C, Bogaard HJ, Marcus JT, Boonstra A, Westerhof N, Vonk-Noordegraaf A, de Man FS. Clinical relevance of right ventricular diastolic stiffness in pulmonary hypertension. Eur Respir J. 2015;45(6):1603–12. https://doi.org/10.1183/09031936.00156714.

    Article  PubMed  Google Scholar 

  6. Kusakari Y, Urashima T, Shimura D, Amemiya E, Miyasaka G, Yokota S, Fujimoto Y, Akaike T, Inoue T, Minamisawa S. Impairment of excitation-contraction coupling in right ventricular hypertrophied muscle with fibrosis induced by pulmonary artery banding. PLoS ONE. 2017;12(1):e0169564. https://doi.org/10.1371/journal.pone.0169564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rochitte CE, Tassi EM, Shiozaki AA. The emerging role of MRI in the diagnosis and management of cardiomyopathies. Curr Cardiol Rep. 2006;8(1):44–52. https://doi.org/10.1007/s11886-006-0010-5.

    Article  PubMed  Google Scholar 

  8. Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C, Moon JC. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis. Circulation. 2010;122(2):138–44. https://doi.org/10.1161/CIRCULATIONAHA.109.930636.

    Article  PubMed  Google Scholar 

  9. Disertori M, Rigoni M, Pace N, Casolo G, Masè M, Gonzini L, Lucci D, Nollo G, Ravelli F. Myocardial fibrosis assessment by LGE is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: a meta-analysis. JACC Cardiovasc Imaging. 2016;9(9):1046–55. https://doi.org/10.1016/j.jcmg.2016.01.033.

    Article  PubMed  Google Scholar 

  10. Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R, Mahmod M, Cochlin L, Karamitsos TD, Robson MD, Watkins H, Neubauer S. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging. 2012;5(6):726–33. https://doi.org/10.1161/CIRCIMAGING.112.976738.

    Article  PubMed  Google Scholar 

  11. Alabed S, Saunders L, Garg P, Shahin Y, Alandejani F, Rolf A, Puntmann VO, Nagel E, Wild JM, Kiely DG, Swift AJ. Myocardial T1-mapping and extracellular volume in pulmonary arterial hypertension: a systematic review and meta-analysis. Magn Reson Imaging. 2021;79:66–75. https://doi.org/10.1016/j.mri.2021.03.011.

    Article  PubMed  Google Scholar 

  12. Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010;225(3):631–7. https://doi.org/10.1002/jcp.22322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Souders CA, Bowers SLK, Baudino TA. Cardiac fibroblast: the renaissance cell. Circ Res. 2009;105(12):1164–76. https://doi.org/10.1161/CIRCRESAHA.109.209809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blankesteijn WM. Has the search for a marker of activated fibroblasts finally come to an end? J Mol Cell Cardiol. 2015;88:120–3. https://doi.org/10.1016/j.yjmcc.2015.10.005.

    Article  CAS  Google Scholar 

  15. Tillmanns J, Hoffmann D, Habbaba Y, Schmitto JD, Sedding D, Fraccarollo D, Galuppo P, Bauersachs J. Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J Mol Cell Cardiol. 2015;87:194–203. https://doi.org/10.1016/j.yjmcc.2015.08.016.

    Article  CAS  PubMed  Google Scholar 

  16. Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem. 1999;274(51):36505–12. https://doi.org/10.1074/jbc.274.51.36505.

    Article  CAS  PubMed  Google Scholar 

  17. Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The living scar–cardiac fibroblasts and the injured heart. Trends Mol Med. 2016;22(2):99–114. https://doi.org/10.1016/j.molmed.2015.12.006.

    Article  PubMed  PubMed Central  Google Scholar 

  18. de Haas HJ, van den Borne SW, Boersma HH, Slart RH, Fuster V, Narula J. Evolving role of molecular imaging for new understanding: targeting myofibroblasts to predict remodeling. Ann N Y Acad Sci. 2012;1254(1):33–41. https://doi.org/10.1111/j.1749-6632.2012.06476.x.

    Article  CAS  PubMed  Google Scholar 

  19. Varasteh Z, Mohanta S, Robu S, Braeuer M, Li Y, Omidvari N, Topping G, Sun T, Nekolla SG, Richter A, Weber C, Habenicht A, Haberkorn UA, Weber WA. Molecular imaging of fibroblast activity after myocardial infarction using a 68Ga-labeled fibroblast activation protein inhibitor, FAPI-04. J Nucl Med. 2019;60(12):1743–9. https://doi.org/10.2967/jnumed.119.226993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi X, Lin X, Huo L, Li X. Cardiac fibroblast activation in dilated cardiomyopathy detected by positron emission tomography. J Nucl Cardiol. 2020. https://doi.org/10.1007/s12350-020-02315-w.

    Article  PubMed  Google Scholar 

  21. Wang L, Zhang Z, Zhao Z, Yan C, Fang W. 68Ga-FAPI right heart uptake in a patient with idiopathic pulmonary arterial hypertension. J Nucl Cardiol. 2020. https://doi.org/10.1007/s12350-020-02407-7.

    Article  PubMed  Google Scholar 

  22. Xing HQ, Gong JN, Chen BX, Guo XJ, Yang YH, Huo L, Yang MF. Comparison of 68Ga-FAPI imaging and cardiac magnetic resonance in detection of myocardial fibrosis in a patient with chronic thromboembolic pulmonary hypertension. J Nucl Cardiol. 2021. https://doi.org/10.1007/s12350-020-02517-2.

    Article  PubMed  Google Scholar 

  23. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Rev Esp Cardiol (Engl Ed). 2016;69(2):177. https://doi.org/10.1016/j.rec.2016.01.002.

    Article  Google Scholar 

  24. Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, Jäger D, Mier W, Haberkorn U. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59(9):1415–22. https://doi.org/10.2967/jnumed.118.210443.

    Article  CAS  PubMed  Google Scholar 

  25. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography: endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713. https://doi.org/10.1016/j.echo.2010.05.010.

    Article  PubMed  Google Scholar 

  26. Leslie KO, Taatjes DJ, Schwarz J, vonTurkovich M, Low RB. Cardiac myofibroblasts express alpha smooth muscle actin during right ventricular pressure overload in the rabbit. Am J Pathol. 1991;139(1):207–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mauritz GJ, Kind T, Marcus JT, Bogaard HJ, van de Veerdonk M, Postmus PE, Boonstra A, Westerhof N, Vonk-Noordegraaf A. Progressive changes in right ventricular geometric shortening and long-term survival in pulmonary arterial hypertension. Chest. 2012;141(4):935–43. https://doi.org/10.1378/chest.10-3277.

    Article  PubMed  Google Scholar 

  28. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, Chamera E, Corretti MC, Champion HC, Abraham TP, Girgis RE, Hassoun PM. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–41. https://doi.org/10.1164/rccm.200604-547OC.

    Article  PubMed  Google Scholar 

  29. Andersen S, Nielsen-Kudsk JE, Vonk Noordegraaf A, de Man FS. Right ventricular fibrosis. Circulation. 2019;139(2):269–85. https://doi.org/10.1161/CIRCULATIONAHA.118.035326.

    Article  CAS  PubMed  Google Scholar 

  30. Eghbali M. Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol. 1992;87(Suppl 2):183–9. https://doi.org/10.1007/978-3-642-72477-0_16.

    Article  CAS  PubMed  Google Scholar 

  31. Gomez-Arroyo J, Sakagami M, Syed AA, Farkas L, Van Tassell B, Kraskauskas D, Mizuno S, Abbate A, Bogaard HJ, Byron PR, Voelkel NF. Iloprost reverses established fibrosis in experimental right ventricular failure. Eur Respir J. 2015;45(2):449–62. https://doi.org/10.1183/09031936.00188013.

    Article  CAS  PubMed  Google Scholar 

  32. Friedberg MK, Cho MY, Li J, Assad RS, Sun M, Rohailla S, Honjo O, Apitz C, Redington AN. Adverse biventricular remodeling in isolated right ventricular hypertension is mediated by increased transforming growth factor-β1 signaling and is abrogated by angiotensin receptor blockade. Am J Respir Cell Mol Biol. 2013;49(6):1019–28. https://doi.org/10.1165/rcmb.2013-0149OC.

    Article  CAS  PubMed  Google Scholar 

  33. Mehta BB, Auger DA, Gonzalez JA, Workman V, Chen X, Chow K, Stump CJ, Mazimba S, Kennedy JL, Gay E, Salerno M, Kramer CM, Epstein FH, Bilchick KC. Detection of elevated right ventricular extracellular volume in pulmonary hypertension using Accelerated and Navigator-Gated Look-Locker Imaging for Cardiac T1 Estimation (ANGIE) cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2015;17:110. https://doi.org/10.1186/s12968-015-0209-y.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang J, Zhao H, Wang Y, Herrmann HC, Witschey WRT, Han Y. Native T1 and T2 mapping by cardiovascular magnetic resonance imaging in pressure overloaded left and right heart diseases. J Thorac Dis. 2018;10(5):2968–75. https://doi.org/10.21037/jtd.2018.04.141.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Patel RB, Li E, Benefield BC, Swat SA, Polsinelli VB, Carr JC, Shah SJ, Markl M, Collins JD, Freed BH. Diffuse right ventricular fibrosis in heart failure with preserved ejection fraction and pulmonary hypertension. ESC Heart Fail. 2020;7(1):253–63. https://doi.org/10.1002/ehf2.12565.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bradlow WM, Assomull R, Kilner PJ, Gibbs JS, Sheppard MN, Mohiaddin RH. Understanding late gadolinium enhancement in pulmonary hypertension. Circ Cardiovasc Imaging. 2010;3(4):501–3. https://doi.org/10.1161/CIRCIMAGING.109.919779.

    Article  PubMed  Google Scholar 

  37. Marcus JT, Vonk Noordegraaf A, Roeleveld RJ, Postmus PE, Heethaar RM, Van Rossum AC, Boonstra A. Impaired left ventricular filling due to right ventricular pressure overload in primary pulmonary hypertension: noninvasive monitoring using MRI. Chest. 2001;119(6):1761–5. https://doi.org/10.1378/chest.119.6.1761.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support (ZYLX202105) and the National Natural Science Foundation of China (81871380 and 82071967).

Author information

Authors and Affiliations

Authors

Contributions

Bi-Xi Chen wrote the draft of the manuscript; Bi-Xi Chen and Juan-Ni Gong collected and analysed the clinical data; Hai-Qun Xing and Xiao-Ying Xi analysed the PET/CT data; Bi-Xi Chen and Xiao-Juan Guo analysed the CMR data; Min-Fu Yang, Yuan-Hua Yang, and Li Huo conceived the study and interpreted the results; Min-Fu Yang makes critical revision of the manuscript for important intellectual content. All authors contributed to the article’s revision, agreed to its submission, and had full access to original data.

Corresponding author

Correspondence to Min-Fu Yang.

Ethics declarations

Ethics approval

All procedures involving human participants were carried out in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Patients signed informed consent regarding publishing their data and photographs.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bi-Xi Chen, Hai-Qun Xing, and Juan-Ni Gong contributed equally to this work and are co-first authors.

This article is part of the Topical Collection on Cardiology

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 127 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, BX., Xing, HQ., Gong, JN. et al. Imaging of cardiac fibroblast activation in patients with chronic thromboembolic pulmonary hypertension. Eur J Nucl Med Mol Imaging 49, 1211–1222 (2022). https://doi.org/10.1007/s00259-021-05577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05577-9

Keywords

Navigation