Skip to main content
Log in

Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

A stress fracture is a focal failure of bone induced by the summation of repetitive forces, which overwhelms the normal bone remodeling cycle. This review, the first of two parts, discusses the general principles of stress fractures of the foot and ankle. This includes bone structure, biomechanics of stress applied to bone, bone remodeling, risk factors for stress fracture, and general principles of imaging and treatment of stress fractures. Cortical bone and trabecular bone have a contrasting macrostructure, which leads to differing resistances to externally applied forces. The variable and often confusing imaging appearance of stress fractures of the foot and ankle can largely be attributed to the different imaging appearance of bony remodeling of trabecular and cortical bone. Risk factors for stress fracture can be divided into intrinsic and extrinsic factors. Stress fractures subject to compressive forces are considered low-risk and are treated with activity modification and correction of any modifiable risk factors. Stress fractures subject to tensile forces and/or located in regions of decreased vascularity are considered high risk, with additional treatment options including restricted weight-bearing or surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stafford SA, Rosenthal DI, Gebhardt MC, Brady TJ, Scott JA. MRI in stress fracture. AJR Am J Roentgenol. 1986;147(3):553–6.

    Article  CAS  PubMed  Google Scholar 

  2. Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23(5):399–407.

    Article  CAS  PubMed  Google Scholar 

  3. Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.

    Article  CAS  PubMed  Google Scholar 

  4. Pepper M, Akuthota V, McCarty EC. The pathophysiology of stress fractures. Clin Sports Med. 2006;25(1):1–16. vii.

    Article  PubMed  Google Scholar 

  5. Pathria MN, Chung CB, Resnick DL. Acute and stress-related injuries of bone and cartilage: pertinent anatomy, basic biomechanics, and imaging perspective. Radiology. 2016;280(1):21–38.

    Article  PubMed  Google Scholar 

  6. Anderson MW, Greenspan A. Stress fractures. Radiology. 1996;199(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  7. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3 Suppl 3:S131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ritchie RO, Kinney JH, Kruzic JJ, Nalla RK. A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract Eng Mater Struct. 2005;28(4):345–71.

    Article  CAS  Google Scholar 

  9. Burr DB, Akkus O. Bone morphology and organization. In: Basic and applied bone biology. Amsterdam: Elsevier; 2013. p. 3–25.

    Google Scholar 

  10. Carter DR, Van Der Meulen MC, Beaupré GS. Mechanical factors in bone growth and development. Bone. 1996;18(1 Suppl):5S–10.

  11. Robling AG, Fuchs RK, Burr DB. Mechanical adaptation. In: Basic and applied bone biology. 2014. p. 175–204.

  12. Daffner RH, Pavlov H. Stress fractures: current concepts. AJR Am J Roentgenol. 1992;159(2):245–52.

    Article  CAS  PubMed  Google Scholar 

  13. Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, et al. An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study. Clin Orthop Relat Res. 1988;231:216–21.

    Google Scholar 

  14. Churches AE, Howlett CR, Waldron KJ, Ward GW. The response of living bone to controlled time-varying loading: method and preliminary results. J Biomech. 1979;12(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  15. Allen MR, Burr DB. Bone modeling and remodeling. In: Basic and applied bone biology. Amsterdam: Elsevier; 2014. p. 75–90.

    Chapter  Google Scholar 

  16. Burr DB, Milgrom C, Boyd RD, Higgins WL, Robin G, Radin EL. Experimental stress fractures of the tibia. Biological and mechanical aetiology in rabbits. J Bone Joint Surg (Br). 1990;72(3):370–5.

    CAS  Google Scholar 

  17. Batra NN, Li YJ, Yellowley CE, You L, Malone AM, Chi HK, et al. Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells. J Biomech. 2005;38(9):1909–17.

    Article  PubMed  Google Scholar 

  18. Kini U, Nandeesh BN. Physiology of bone formation, remodeling, and metabolism. In: Fogelman I, Gnanasegaran G, van der Wall H, editors. Radionuclide and hybrid bone imaging. Berlin: Springer; 2012. p. 29–57.

    Chapter  Google Scholar 

  19. Berger FH, de Jonge MC, Maas M. Stress fractures in the lower extremity. The importance of increasing awareness amongst radiologists. Eur J Radiol. 2007;62(1):16–26.

    Article  PubMed  Google Scholar 

  20. Fazzalari NL. Trabecular microfracture. Calcif Tissue Int. 1993;53:S143–7.

    Article  PubMed  Google Scholar 

  21. Shindle MK, Endo Y, Warren RF, Lane JM, Helfet DL, Schwartz EN, et al. Stress fractures about the tibia, foot, and ankle. J Am Acad Orthop Surg. 2012;20(3):167–76.

    Article  PubMed  Google Scholar 

  22. Dugan S, Sosa SMA. Chapter 79: stress fractures of the lower limb. In: Essentials of physical medicine and rehabilitation. Amsterdam: Elsevier; 2015. p. 405–10.

  23. Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case–control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.

    Article  PubMed  Google Scholar 

  25. Ruohola J-P, Laaksi I, Ylikomi T, Haataja R, Mattila VM, Sahi T, et al. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res. 2006;21(9):1483–8.

    Article  CAS  PubMed  Google Scholar 

  26. Nelson BJ, Arciero RA, Maffulli N. Stress fractures in the female athlete. Sports Med Arthrosc Rev. 2002;10(1):83.

    Article  Google Scholar 

  27. Jacobs JM, Cameron KL, Bojescul JA. Lower extremity stress fractures in the military. Clin Sports Med. 2014;33(4):591–613.

    Article  PubMed  Google Scholar 

  28. Miller TL, Best TM. Taking a holistic approach to managing difficult stress fractures. J Orthop Surg Res. 2016;11(1):98.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Daffner RH, Martinez S, Gehweiler JA, Harrelson JM. Stress fractures of the proximal tibia in runners. Radiology. 1982;142(1):63–5.

    Article  CAS  PubMed  Google Scholar 

  30. Sullivan D, Warren RF, Pavlov H, Kelman G. Stress fractures in 51 runners. Clin Orthop Relat Res. 1984;187:188–92.

    Google Scholar 

  31. Brent Edwards W, Taylor D, Rudolphi TJ, Gillette JC, Derrick TR. Effects of running speed on a probabilistic stress fracture model. Clin Biomech. 2010;25(4):372–7.

    Article  Google Scholar 

  32. Popp KL, Hughes JM, Smock AJ, Novotny SA, Stovitz SD, Koehler SM, et al. Bone geometry, strength, and muscle size in runners with a history of stress fracture. Med Sci Sports Exerc. 2009;41(12):2145–50.

    Article  PubMed  Google Scholar 

  33. Popp KL, McDermott W, Hughes JM, Baxter SA, Stovitz SD, Petit MA. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history. Bone. 2017;94:22–8.

    Article  PubMed  Google Scholar 

  34. Raasch WG, Hergan DJ. Treatment of stress fractures: the fundamentals. Clin Sports Med. 2006;25(1):29–36.

    Article  PubMed  Google Scholar 

  35. Boden BP, Osbahr DC, Jimenez C. Low-risk stress fractures. Am J Sports Med. 2001;29(1):100–11.

    CAS  PubMed  Google Scholar 

  36. McInnis KC, Ramey LN. High-risk stress fractures: diagnosis and management. PM R. 2016;8(3):S113–24.

    Article  PubMed  Google Scholar 

  37. Diehl JJ, Best TM, Kaeding CC. Classification and return-to-play considerations for stress fractures. Clin Sports Med. 2006;25(1):17–28.

    Article  PubMed  Google Scholar 

  38. Niva MH, Sormaala MJ, Kiuru MJ, Haataja R, Ahovuo JA, Pihlajamaki HK. Bone stress injuries of the ankle and foot: an 86-month magnetic resonance imaging-based study of physically active young adults. Am J Sports Med. 2007;35(4):643–9.

    Article  PubMed  Google Scholar 

  39. Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG. Stress fractures in athletes. A study of 320 cases. Am J Sports Med. 1987;15(1):46–58.

    Article  CAS  PubMed  Google Scholar 

  40. McCormick F, Nwachukwu BU, Provencher MT. Stress fractures in runners. Clin Sports Med. 2010;29(3):399–416.

    Article  Google Scholar 

  41. Taki M, Iwata O, Shiono M, Kimura M, Takagishi K. Extracorporeal shock wave therapy for resistant stress fracture in athletes: a report of 5 cases. Am J Sports Med. 2007;35(7):1188–92.

    Article  PubMed  Google Scholar 

  42. Wright AA, Hegedus EJ, Lenchik L, Kuhn KJ, Santiago L, Smoliga JM. Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med. 2016;2015:255–63.

    Article  Google Scholar 

  43. Kijowski R, Choi J, Mukharjee R, de Smet A. Significance of radiographic abnormalities in patients with tibial stress injuries: correlation with magnetic resonance imaging. Skeletal Radiol. 2007;36(7):633–40.

    Article  PubMed  Google Scholar 

  44. Savoca CJ. Stress fractures. A classification of the earliest radiographic signs. Radiology. 1971;100(3):519–24.

    Article  CAS  PubMed  Google Scholar 

  45. Hopson CN, Perry DR. Stress fractures of the calcaneus in women marine recruits. Clin Orthop Relat Res. 1977;128:159–62.

    Google Scholar 

  46. Coris EE, Lombardo JA. Tarsal navicular stress fractures. Am Fam Physician. 2003;67(1):85–90.

    PubMed  Google Scholar 

  47. Muthukumar T, Butt SH, Cassar-Pullicino VN. Stress fractures and related disorders in foot and ankle: plain films, scintigraphy, CT, and MR imaging. Semin Musculoskelet Radiol. 2005;9(3):210–26.

    Article  PubMed  Google Scholar 

  48. Wall J, Feller JF. Imaging of stress fractures in runners. Clin Sports Med. 2006;25(4):781–802.

    Article  PubMed  Google Scholar 

  49. Gaeta M, Minutoli F, Scribano E, Ascenti G, Vinci S, Bruschetta D, et al. CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005;235(2):553–61.

    Article  PubMed  Google Scholar 

  50. Kiuru MJ, Pihlajamaki HK, Hietanen HJ, Ahovuo JA. MR imaging, bone scintigraphy, and radiography in bone stress injuries of the pelvis and the lower extremity. Acta Radiol. 2002;43(2):207–12.

    Article  CAS  PubMed  Google Scholar 

  51. Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23(4):472–81.

    Article  CAS  PubMed  Google Scholar 

  52. Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469(8):2179–93.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Manhard MK, Horch RA, Harkins KD, Gochberg DF, Nyman JS, Does MD. Validation of quantitative bound- and pore-water imaging in cortical bone. Magn Reson Med. 2014;71(6):2166–71.

    Article  PubMed  Google Scholar 

  54. Schweitzer ME, White LM. Does altered biomechanics cause marrow edema? Radiology. 1996;198(3):851–3.

    Article  CAS  PubMed  Google Scholar 

  55. Bergman AG, Fredericson M, Ho C, Matheson GO. Asymptomatic tibial stress reactions: MRI detection and clinical follow-up in distance runners. AJR Am J Roentgenol. 2004;183(3):635–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review is based on an educational exhibit presented at the Radiological Society of North America annual meeting in 2016.

The authors are grateful for the advice of Dr. Mini Pathria regarding a draft of this manuscript, and of Dr. Christopher Chiodo regarding his assistance with the educational exhibit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob C. Mandell.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandell, J.C., Khurana, B. & Smith, S.E. Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment. Skeletal Radiol 46, 1021–1029 (2017). https://doi.org/10.1007/s00256-017-2640-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2640-7

Keywords

Navigation