Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 21, pp 9207–9220 | Cite as

Levansucrase from Halomonas smyrnensis AAD6T: first halophilic GH-J clan enzyme recombinantly expressed, purified, and characterized

  • Onur Kirtel
  • Carmen Menéndez
  • Maxime Versluys
  • Wim Van den Ende
  • Lázaro Hernández
  • Ebru Toksoy Öner
Biotechnologically relevant enzymes and proteins

Abstract

Fructans, homopolymers of fructose produced by fructosyltransferases (FTs), are emerging as intriguing components in halophiles since they are thought to be associated with osmotic stress tolerance and overall fitness of microorganisms and plants under high-salinity conditions. Here, we report on the full characterization of the first halophilic FT, a levansucrase from Halomonas smyrnensis AAD6T (HsLsc; EC 2.4.1.10). The encoding gene (lsc) was cloned into a vector with a 6xHis Tag at its C-terminus, then expressed in Escherichia coli. The purified recombinant enzyme (47.3 kDa) produces levan and a wide variety of fructooligosaccharides from sucrose, but only in the presence of high salt concentrations (> 1.5 M NaCl). HsLsc showed Hill kinetics and pH and temperature optima of 5.9 and 37 °C, respectively. Interestingly, HsLsc was still very active at salt concentrations close to saturation (4.5 M NaCl) and was selectively inhibited by divalent cations. The enzyme showed high potential in producing novel saccharides derived from raffinose as both fructosyl donor and acceptor and cellobiose, lactose, galactose, and ʟ-arabinose as fructosyl acceptors. With its unique biochemical characteristics, HsLsc is an important enzyme for future research and potential industrial applications in a world faced with drought and diminishing freshwater supplies.

Keywords

Levansucrase Fructosyltransferase Halophilic enzyme Halomonas smyrnensis Levan Fructan 

Notes

Funding information

WVdE and MV are supported by funds from FWO Vlaanderen. The financial support of The Scientific and Technological Research Council of Turkey (TUBITAK) (grant number: 115O495) and Marmara University Scientific Research Fund (grant number: FEN-A-130515-0178) are gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9311_MOESM1_ESM.pdf (493 kb)
ESM 1 (PDF 492 kb)

References

  1. Ammar YB, Matsubara T, Ito K, Iizuka M, Limpaseni T, Pongsawasdi P, Minamiura N (2002) Characterization of a thermostable levansucrase from Bacillus sp. TH4-2 capable of producing high molecular weight levan at high temperature. J Biotechnol 99:111–119.  https://doi.org/10.1016/S0168-1656(02)00160-8 CrossRefPubMedGoogle Scholar
  2. Andersone I, Auzina L, Vigants A, Mutere O, Zikmanis P (2004) Formation of levan from raffinose by levansucrase of Zymomonas mobilis. Eng Life Sci 4:56–59.  https://doi.org/10.1002/elsc.200400006 CrossRefGoogle Scholar
  3. Ates O, Arga KY, Toksoy Öner E (2013) The stimulatory effect of mannitol on levan biosynthesis: lessons from metabolic systems analysis of Halomonas smyrnensis AAD6T. Biotechnol Prog 29:1386–1397.  https://doi.org/10.1002/btpr.1823 CrossRefPubMedGoogle Scholar
  4. Avigad G (1957) Enzymatic synthesis and characterization of a new trisaccharide, α-lactosyl-β-fructofuranoside. J Biol Chem 229:121–129PubMedGoogle Scholar
  5. Avsar G, Agirbasli D, Agirbasli MA, Gunduz O, Toksoy Öner E (2018) Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydr Polym 193:316–325.  https://doi.org/10.1016/j.carbpol.2018.03.075 CrossRefPubMedGoogle Scholar
  6. Axente E, Sima F, Sima LE, Erginer M, Eroglu MS, Serban N, Ristoscu C, Petrescu SM, Toksoy Öner E, Mihailescu IN (2014) Combinatorial MAPLE gradient thin film assemblies signalling to human osteoblasts. Biofabrication 6:035010.  https://doi.org/10.1088/1758-5082/6/3/035010 CrossRefPubMedGoogle Scholar
  7. Aydin B, Ozer T, Toksoy Öner E, Arga KY (2018) The genome-based metabolic systems engineering to boost levan production in a halophilic bacterial model. OMICS 22:198–209.  https://doi.org/10.1089/omi.2017.0216 CrossRefPubMedGoogle Scholar
  8. Baciu IE, Jördening HJ, Seibel J, Buchholz K (2005) Investigations of the transfructosylation reaction by fructosyltransferase from B. subtilis NCIMB 11871 for the synthesis of the sucrose analogue galactosyl-fructoside. J Biotechnol 116:347–357.  https://doi.org/10.1016/j.jbiotec.2004.10.019 CrossRefPubMedGoogle Scholar
  9. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258.  https://doi.org/10.1093/nar/gku340 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Biton J, Michel J, Beller DL, Pelenc V, Paul F, Monsan PF, Gellf G (1995) Enzymatic synthesis of low-calorie sugar substitutes cellobiofructose and gentiobiofructose. Ann N Y Acad Sci 750:321–324.  https://doi.org/10.1111/j.1749-6632.1995.tb19973.x CrossRefPubMedGoogle Scholar
  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Caputi L, Nepogodiev SA, Malnoy M, Rejzek M, Field RA, Benini S (2013) Biomolecular characterization of the levansucrase of Erwinia amylovora, a promising biocatalyst for the synthesis of fructooligosaccharides. J Agric Food Chem 61:12265–12273.  https://doi.org/10.1021/jf4023178 CrossRefPubMedGoogle Scholar
  13. Chambert R, Petit-Glatron MF (1991) Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J 279:35–41.  https://doi.org/10.1042/bj2790035 CrossRefGoogle Scholar
  14. Chen GQ, Jiang XR (2018) Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol 50:94–100.  https://doi.org/10.1016/j.copbio.2017.11.016 CrossRefPubMedGoogle Scholar
  15. Choi HJ, Kim CS, Kim P, Jung HC, Oh DK (2004) Lactosucrose bioconversion from lactose and sucrose by whole cells of Paenibacillus polymyxa harboring levansucrase activity. Biotechnol Prog 20:1876–1879.  https://doi.org/10.1021/bp049770v CrossRefPubMedGoogle Scholar
  16. DasSarma S, DasSarma P (2012) Halophiles. eLS.  https://doi.org/10.1038/npg.els.0004356
  17. Diken E, Özer T, Arikan M, Emrence Z, Toksoy Öner E, Ustek D, Arga KY (2015) Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T. SpringerPlus 4:393.  https://doi.org/10.1186/s40064-015-1184-3 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Elevi Bardavid R, Oren A (2012) Acid-shifted isoelectric point profiles of the proteins in a hypersaline microbial mat: an adaptation to life at high salt concentrations? Extremophiles 16:787–792.  https://doi.org/10.1007/s00792-012-0476-6 CrossRefPubMedGoogle Scholar
  19. El-Refai HA, Abdel-Fattah AF, Mostafa FA (2009) Enzymic synthesis of levan and fructo-oligosaccharides by Bacillus circulans and improvement of levansucrase stability by carbohydrate coupling. World J Microbiol Biotechnol 25:821–827.  https://doi.org/10.1007/s11274-009-9957-x CrossRefGoogle Scholar
  20. Erkorkmaz BA, Kirtel O, Ateş Duru Ö, Toksoy Öner E (2018) Development of a cost-effective production process for Halomonas levan. Bioprocess Biosyst Eng:1–13.  https://doi.org/10.1007/s00449-018-1952-x CrossRefGoogle Scholar
  21. Gao S, Qi X, Hart DJ, Gao H, An Y (2017) Expression and characterization of levansucrase from Clostridium acetobutylicum. J Agric Food Chem 65:867–871.  https://doi.org/10.1021/acs.jafc.6b05165 CrossRefPubMedGoogle Scholar
  22. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607CrossRefGoogle Scholar
  23. Goldman D, Lavid N, Schwartz A, Shoham G, Danino D, Shoham Y (2008) Two active forms of Zymomonas mobilis levansucrase an ordered microfibril structure of the enzyme promotes levan polymerization. J Biol Chem 283:32209–32217.  https://doi.org/10.1074/jbc.M805985200 CrossRefPubMedGoogle Scholar
  24. Gomes TD, Caridade SG, Sousa MP, Azevedo S, Kandur MY, Toksoy Öner E, Alves NM, Mano JF (2018) Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomater 69:183–195.  https://doi.org/10.1016/j.actbio.2018.01.027 CrossRefPubMedGoogle Scholar
  25. Graziano G, Merlino A (2014) Molecular bases of protein halotolerance. Biochim Biophys Acta Proteins Proteomics 1844:850–858.  https://doi.org/10.1016/j.bbapap.2014.02.018 CrossRefGoogle Scholar
  26. Hernández L, Arrieta J, Menendez C, Vazquez R, Coego A, Suarez V, Selman G, Petit-Glatron MF, Chambert R (1995) Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J 309:113–118.  https://doi.org/10.1042/bj3090113 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hettwer U, Gross M, Rudolph K (1995) Purification and characterization of an extracellular levansucrase from Pseudomonas syringae pv. phaseolicola. J Bacteriol 177:2834–2839.  https://doi.org/10.1128/jb.177.10.2834-2839.1995 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Homann A, Biedendieck R, Götze S, Jahn D, Seibel J (2007) Insights into polymer versus oligosaccharide synthesis: mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium. Biochem J 407:189–198.  https://doi.org/10.1042/BJ20070600 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ishida R, Sakaguchi K, Matsuzaki C, Katoh T, Ishida N, Yamamoto K, Hisa K (2016) Levansucrase from Leuconostoc mesenteroides NTM048 produces a levan exopolysaccharide with immunomodulating activity. Biotechnol Lett 38:681–687.  https://doi.org/10.1007/s10529-015-2024-9 CrossRefPubMedGoogle Scholar
  30. Jang KH, Song KB, Kim CH, Chung BH, Kang SA, Chun UH, Choue RW, Rhee SK (2001) Comparison of characteristics of levan produced by different preparations of levansucrase from Zymomonas mobilis. Biotechnol Lett 23:339–344.  https://doi.org/10.1023/A:1005641220946 CrossRefGoogle Scholar
  31. Kazak Sarilmiser H, Ates O, Ozdemir G, Arga KY, Toksoy Oner E (2015) Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. J Biosci Bioeng 119(4):455–463CrossRefGoogle Scholar
  32. Khmelenina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE, Trotsenko YA (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 35:257–261.  https://doi.org/10.1007/s002849900249 CrossRefGoogle Scholar
  33. Kim MG, Seo JW, Song KB, Kim CH, Chung BH, Rhee SK (1998) Levan and fructosyl derivatives formation by a recombinant levansucrase from Rahnella aquatilis. Biotechnol Lett 20:333–336.  https://doi.org/10.1023/A:1005310926399 CrossRefGoogle Scholar
  34. Kırtel O, Versluys M, Van den Ende W, Toksoy Öner E (2018) Fructans of the saline world. Biotechnol Adv 36:1524–1539.  https://doi.org/10.1016/j.biotechadv.2018.06.009 CrossRefPubMedGoogle Scholar
  35. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.  https://doi.org/10.1038/227680a0 CrossRefGoogle Scholar
  36. Lammens W, Le Roy K, Schroeven L, Van Laere A, Rabijns A, Van den Ende W (2009) Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. J Exp Bot 60:727–740.  https://doi.org/10.1093/jxb/ern333 CrossRefPubMedGoogle Scholar
  37. Li M, Seo S, Karboune S (2015a) Bacillus amyloliquefaciens levansucrase-catalyzed the synthesis of fructooligosaccharides, oligolevan and levan in maple syrup-based reaction systems. Carbohydr Polym 133:203–212.  https://doi.org/10.1016/j.carbpol.2015.07.010 CrossRefPubMedGoogle Scholar
  38. Li W, Yu S, Zhang T, Jiang B, Mu W (2015b) Recent novel applications of levansucrases. Appl Microbiol Biotechnol 99:6959–6969.  https://doi.org/10.1007/s00253-015-6797-5 CrossRefPubMedGoogle Scholar
  39. Li W, Yu S, Zhang T, Jiang B, Mu W (2017) Synthesis of raffinose by transfructosylation using recombinant levansucrase from Clostridium arbusti SL206. J Sci Food Agric 97:43–49.  https://doi.org/10.1002/jsfa.7903 CrossRefPubMedGoogle Scholar
  40. Liu Q, Yu S, Zhang T, Jiang B, Mu W (2017) Efficient biosynthesis of levan from sucrose by a novel levansucrase from Brenneria goodwinii. Carbohydr Polym 157:1732–1740.  https://doi.org/10.1016/j.carbpol.2016.11.057 CrossRefPubMedGoogle Scholar
  41. Loukas A, Kappas I, Abatzopoulos TJ (2018) HaloDom: a new database of halophiles across all life domains. J Biol Res (Thessaloniki) 25:2.  https://doi.org/10.1186/s40709-017-0072-0 CrossRefGoogle Scholar
  42. Lu L, Fu F, Zhao R, Jin L, He C, Xu L, Xiao M (2014) A recombinant levansucrase from Bacillus licheniformis 8-37-0-1 catalyzes versatile transfructosylation reactions. Process Biochem 49:1503–1510.  https://doi.org/10.1016/j.procbio.2014.05.012 CrossRefGoogle Scholar
  43. MacRae E, Lunn JE (2012) Photosynthetic sucrose biosynthesis: an evolutionary perspective. In: Eaton-Rye J, Tripathy B, Sharkey T (eds) Photosynthesis. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 675–702Google Scholar
  44. Martínez-Fleites C, Ortíz-Lombardía M, Pons T, Tarbouriech N, Taylor EJ, Arrieta JG, Hernández L, Davies GJ (2005) Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochem J 390:19–27.  https://doi.org/10.1042/BJ20050324 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Méndez-Lorenzo L, Porras-Domínguez JR, Raga-Carbajal E, Olvera C, Rodríguez-Alegría ME, Carrillo-Nava E, Costas M, Munguía AL (2015) Intrinsic levanase activity of Bacillus subtilis 168 levansucrase (SacB). PloS One 10:e0143394.  https://doi.org/10.1371/journal.Pone.0143394 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Meng G, Fütterer K (2003) Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Mol Biol 10:935–941.  https://doi.org/10.1038/nsb974 CrossRefGoogle Scholar
  47. Miller GL (1959) Modified DNS method for reducing sugars. Anal Chem 31:426–428CrossRefGoogle Scholar
  48. Morales-Arrieta S, Rodríguez ME, Segovia L, López-Munguía A, Olvera-Carranza C (2006) Identification and functional characterization of levS, a gene encoding for a levansucrase from Leuconostoc mesenteroides NRRL B-512 F. Gene 376:59–67.  https://doi.org/10.1016/j.gene.2006.02.007 CrossRefPubMedGoogle Scholar
  49. Nakapong S, Pichyangkura R, Ito K, Iizuka M, Pongsawasdi P (2013) High expression level of levansucrase from Bacillus licheniformis RN-01 and synthesis of levan nanoparticles. Int J Biol Macromol 54:30–36.  https://doi.org/10.1016/j.ijbiomac.2012.11.017 CrossRefPubMedGoogle Scholar
  50. Oren A (2013) Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol 4:315.  https://doi.org/10.3389/fmicb.2013.00315 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Oren A (2015) Halophilic microbial communities and their environments. Curr Opin Biotechnol 33:119–124.  https://doi.org/10.1016/j.copbio.2015.02.005 CrossRefPubMedGoogle Scholar
  52. Osman A, Toksoy Öner E, Eroglu MS (2017) Novel levan and pNIPA temperature sensitive hydrogels for 5-ASA controlled release. Carbohydr Polym 165:61–70.  https://doi.org/10.1016/j.carbpol.2017.01.097 CrossRefPubMedGoogle Scholar
  53. Ozimek LK, Euverink GJW, Van Der Maarel MJEC, Dijkhuizen L (2005) Mutational analysis of the role of calcium ions in the Lactobacillus reuteri strain 121 fructosyltransferase (levansucrase and inulosucrase) enzymes. FEBS Lett 579:124–1128.  https://doi.org/10.1016/j.febslet.2004.11.113 CrossRefGoogle Scholar
  54. Ozimek LK, Kralj S, Van der Maarel MJ, Dijkhuizen L (2006) The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiol 152:1187–1196.  https://doi.org/10.1099/mic.0.28484-0 CrossRefGoogle Scholar
  55. Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079.  https://doi.org/10.1093/bioinformatics/btm076 CrossRefPubMedGoogle Scholar
  56. Park HE, Park NH, Kim MJ, Lee TH, Lee HG, Yang JY, Cha J (2003) Enzymatic synthesis of fructosyl oligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953. Enzym Microb Technol 32:820–827.  https://doi.org/10.1016/S0141-0229(03)00062-0 CrossRefGoogle Scholar
  57. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786.  https://doi.org/10.1038/nmeth.1701 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Poli A, Kazak H, Gürleyendag B, Tommonaro G, Pieretti G, Toksoy Öner E, Nicolaus B (2009) High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr Polym 78:651–657.  https://doi.org/10.1016/j.carbpol.2009.05.031 CrossRefGoogle Scholar
  59. Porras-Domínguez JR, Ávila-Fernández Á, Miranda-Molina A, Rodríguez-Alegría ME, Munguía AL (2015) Bacillus subtilis 168 levansucrase (SacB) activity affects average levan molecular weight. Carbohydr Polym 132:338–344.  https://doi.org/10.1016/j.carbpol.2015.06.056 CrossRefPubMedGoogle Scholar
  60. Rairakhwada D, Seo JW, Seo MY, Kwon O, Rhee SK, Kim CH (2010) Gene cloning, characterization, and heterologous expression of levansucrase from Bacillus amyloliquefaciens. J Ind Microbiol Biotechnol 37:195–204.  https://doi.org/10.1007/s10295-009-0664-2 CrossRefPubMedGoogle Scholar
  61. Santos-Moriano P, Fernandez-Arrojo L, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ (2015) Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: effect of reaction conditions. J Mol Catal B Enzym 119:18–25.  https://doi.org/10.1016/j.molcatb.2015.05.011 CrossRefGoogle Scholar
  62. Seibel J, Moraru R, Götze S, Buchholz K, Na’amnieh S, Pawlowski A, Hecht HJ (2006) Synthesis of sucrose analogues and the mechanism of action of Bacillus subtilis fructosyltransferase (levansucrase). Carbohydr Res 341:2335–2349.  https://doi.org/10.1016/j.carres.2006.07.001 CrossRefPubMedGoogle Scholar
  63. Sezer AD, Kazak Sarilmiser H, Rayaman E, Çevikbaş A, Toksoy Öner E, Akbuğa J (2015) Development and characterization of vancomycin-loaded levan-based microparticular system for drug delivery. Pharm Dev Technol 22:627–634.  https://doi.org/10.3109/10837450.2015.1116564 CrossRefPubMedGoogle Scholar
  64. Shaheen S, Aman A, Siddiqui NN (2017) Influence of metal ions, surfactants and organic solvents on the catalytic performance of levansucrase from Zymomonas mobilis KIBGE-IB14. J Basic Appl Sci 13:41–46.  https://doi.org/10.6000/1927-5129.2017.13.07 CrossRefGoogle Scholar
  65. Silvério SC, Macedo EA, Teixeira JA, Rodrigues LR (2015) Perspectives on the biotechnological production and potential applications of lactosucrose: a review. J Funct Foods 19:74–90.  https://doi.org/10.1016/j.jff.2015.09.014 CrossRefGoogle Scholar
  66. Strube CP, Homann A, Gamer M, Jahn D, Seibel J, Heinz DW (2011) Polysaccharide synthesis of the levansucrase SacB from Bacillus megaterium is controlled by distinct surface motifs. J Biol Chem 286:17593–17600.  https://doi.org/10.1074/jbc.M110.203166 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Szwengiel A, Czarnecka M, Czarnecki Z (2007) Levan synthesis during associated action of levansucrase and Candida cacaoi DSM 2226 yeast. Pol J Food Nutr Sci 57:433–440Google Scholar
  68. Toksoy Öner E, Hernández L, Combie J (2016) Review of levan polysaccharide: from a century of past experiences to future prospects. Biotechnol Adv 34:827–844.  https://doi.org/10.1016/j.biotechadv.2016.05.002 CrossRefGoogle Scholar
  69. Ua-Arak T, Jakob F, Vogel RF (2017) Fermentation pH modulates the size distributions and functional properties of Gluconobacter albidus TMW 2.1191 levan. Front Microbiol 8:807.  https://doi.org/10.3389/fmicb.2017.00807 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Versluys M, Kirtel O, Toksoy Öner E, Van den Ende W (2018) The fructan syndrome: evolutionary aspects and common themes among plants and microbes. Plant Cell Environ 41:16–38.  https://doi.org/10.1111/pce.13070 CrossRefPubMedGoogle Scholar
  71. Visnapuu T (2012) Levansucrases encoded in the genome of Pseudomonas syringae pv. tomato DC3000: heterologous expression, biochemical characterization, mutational analysis and spectrum of polymerization products. Doctoral dissertation, University of TartuGoogle Scholar
  72. Visnapuu T, Mardo K, Mosoarca C, Zamfir AD, Vigants A, Alamäe T (2011) Levansucrases from Pseudomonas syringae pv. tomato and P. chlororaphis subsp. aurantiaca: substrate specificity, polymerizing properties and usage of different acceptors for fructosylation. J Biotechnol 155:338–349.  https://doi.org/10.1016/j.jbiotec.2011.07.026 CrossRefPubMedGoogle Scholar
  73. Visnapuu T, Mardo K, Alamaee T (2015) Levansucrases of a Pseudomonas syringae pathovar as catalysts for the synthesis of potentially prebiotic oligo-and polysaccharides. New Biotechnol 32:597–605.  https://doi.org/10.1016/j.nbt.2015.01.009 CrossRefGoogle Scholar
  74. Wuerges J, Caputi L, Cianci M, Boivin S, Meijers R, Benini S (2015) The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site. J Struct Biol 191:290–298.  https://doi.org/10.1016/j.jsb.2015.07.010 CrossRefPubMedGoogle Scholar
  75. Xu W, Yu S, Liu Q, Zhang T, Jiang B, Mu W (2017) Enzymatic production of melibiose from raffinose by the levansucrase from Leuconostoc mesenteroides B-512 FMC. J Agric Food Chem 65:3910–3918.  https://doi.org/10.1021/acs.jafc.7b01265 CrossRefPubMedGoogle Scholar
  76. Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442.  https://doi.org/10.1016/j.biotechadv.2014.10.008 CrossRefPubMedGoogle Scholar
  77. Yun JW, Lee MG, Song SK (1994) Batch production of high-content fructo-oligosaccharides from sucrose by the mixed-enzyme system of β-fructofuranosidase and glucose oxidase. J Ferment Bioeng 77:159–163.  https://doi.org/10.1016/0922-338X(94)90316-6 CrossRefGoogle Scholar
  78. Zhang T, Li R, Qian H, Mu W, Miao M, Jiang B (2014) Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr Polym 101:975–981.  https://doi.org/10.1016/j.carbpol.2013.10.045 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IBSB—Industrial Biotechnology and Systems Biology Research Group, Department of BioengineeringMarmara UniversityIstanbulTurkey
  2. 2.Enzyme Technology Group, Center for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
  3. 3.Laboratory of Molecular Plant BiologyKU LeuvenLeuvenBelgium

Personalised recommendations