Advertisement

Applied Microbiology and Biotechnology

, Volume 101, Issue 2, pp 761–769 | Cite as

Geographic and environmental sources of variation in bacterial community composition in a large-scale municipal landfill site in China

  • Liyan SongEmail author
  • Shu Yang
  • Hongjie Liu
  • Jing Xu
Environmental biotechnology

Abstract

Little is known regarding how bacterial communities assemble at landfill, as well as how the environment shapes the composition of bacterial community. In this study, up to 42 refuse samples from a large-scale landfill in China were physicochemically and phylogenetically investigated. 16S ribosomal RNA (rRNA) gene-based Illumina MiSeq sequencing (nine samples) revealed that representatives of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Bacteroidetes were dominant in the refuse samples, which was similar to a previous study on landfill leachate by using 454 pyrosequencing. Although 741 operational taxonomic units (OTUs) were detected across all nine samples, 6 of these OTUs were detected in all of the data sets, suggesting difference between bacterial community structures. Geographical differences between the samples, irrespective of depths, were revealed by a principal component analysis (PCA) based on the terminal restriction fragment length polymorphism (TRFLP) profiles of 42 refuse samples. Redundancy analysis (RDA) suggested that environmental heterogeneity (pH, landfilling ages, and depths) and the abundance of bacteria (represented by 16S rRNA gene copy numbers) were the main drivers shaping the bacterial community structure.

Keywords

Landfill Refuse Bacterial community composition Geographic difference Environmental heterogeneity 

Notes

Acknowledgments

We thank the Natural Science Foundation of China (Grant No. 51578528), the Natural Science Foundation of Chongqing (Grant Nos. cstc2014jcyjA20006 and cstc2014yykfC20002), and Dean Innovation Foundation of Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science (Y33Z080O10) for their financial support. We would like to thank the staff of JCG Refuse landfill for assistance in field sampling.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Ethical statement

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

253_2016_7917_MOESM1_ESM.pdf (798 kb)
ESM 1 (PDF 797 kb)

References

  1. Barlaz MA (1997) Microbial studies of landfills and anaerobic refuse decomposition. American Society for Microbiology PressGoogle Scholar
  2. Barlaz MA, Schaefer DM, Ham RK (1989) Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl Environ Microbiol 55(1):55–65PubMedPubMedCentralGoogle Scholar
  3. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics:btu170Google Scholar
  4. Brad T, van Breukelen BM, Braster M, van Straalen NM, Roling WFM (2008) Spatial heterogeneity in sediment-associated bacterial and eukaryotic communities in a landfill leachate-contaminated aquifer. FEMS Microbiol Ecol 65(3):534–543. doi: 10.1111/j.1574-6941.2008.00533.x CrossRefPubMedGoogle Scholar
  5. Burrell P, O’sullivan C, Song H, Clarke WP, Blackall L (2004) Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. Appl Environ Microbiol 70(4):2414–2419CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carlson CA, Ingraham JL (1983) Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl Environ Microbiol 45(4):1247–1253PubMedPubMedCentralGoogle Scholar
  7. Consortium HMP (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214CrossRefGoogle Scholar
  8. Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, Ward N, Staley J, Fuerst J, Giovannoni S, Schlesner H, Stackebrandt E (2006) The order Planctomycetales. The prokaryotes. Springer, New York, pp. 757–793CrossRefGoogle Scholar
  9. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461CrossRefPubMedGoogle Scholar
  10. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998CrossRefPubMedGoogle Scholar
  11. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25):14863–14868CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71(7):4117–4120CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hammer Ø, Harper D, Ryan P (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4Google Scholar
  15. He Y, Li Z, Yao L, Zhao YC, Huang MS, Zhou GM (2014) Molecular phylogenetic analysis of dominant microbial populations in aged refuse. World J Microbiol Biotechnol 30(3):1037–1045CrossRefPubMedGoogle Scholar
  16. IPCC (2013) IPCC in Climate change 2013: the physical science basis. Cambridge University PressGoogle Scholar
  17. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32(4):297–336. doi: 10.1080/10643380290813462 CrossRefGoogle Scholar
  18. Krishnamurthi S, Chakrabarti T (2013) Diversity of bacteria and archaea from a landfill in Chandigarh, India as revealed by culture-dependent and culture-independent molecular approaches. Syst Appl Microbiol 36(1):56–68. doi: 10.1016/j.syapm.2012.08.009 CrossRefPubMedGoogle Scholar
  19. Leckie JO, Halvadakis C, Pacey JG (1979) Landfill management with moisture control. J Environ Eng Div 105(2):337–355Google Scholar
  20. Lou Z, Zhao Y, Zhang Y (2007) Landfill leachate treatment technology and practice 1 edn. Chemical Industry PressGoogle Scholar
  21. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2P1):209–220PubMedGoogle Scholar
  22. McArthur JV, Kovacic DA, Smith MH (1988) Genetic diversity in natural-populations of a soil bacterium across a landscape gradient. Proc Natl Acad Sci U S A 85(24):9621–9624CrossRefPubMedPubMedCentralGoogle Scholar
  23. McDonald JE, Allison HE, McCarthy AJ (2010) Composition of the landfill microbial community as determined by application of domain- and group-specific 16S and 18S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 76(4):1301–1306. doi: 10.1128/aem.01783-09 CrossRefPubMedGoogle Scholar
  24. Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens M, Wagner H (2013) Community ecology package (vegan). R package version:2.0–7Google Scholar
  25. Pourcher A-M, Sutra L, Hébé I, Moguedet G, Bollet C, Simoneau P, Gardan L (2001) Enumeration and characterization of cellulolytic bacteria from refuse of a landfill. FEMS Microbiol Ecol 34(3):229–241. doi: 10.1111/j.1574-6941.2001.tb00774.x CrossRefPubMedGoogle Scholar
  26. Qiu G, Y-h S, Zeng P, Duan L, Xiao S (2013) Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket (UASB)–membrane bioreactor (MBR) process for berberine antibiotic wastewater treatment. Bioresour Technol 142:52–62. doi: 10.1016/j.biortech.2013.04.077 CrossRefPubMedGoogle Scholar
  27. Rinne J, Pihlatie M, Lohila A, Thum T, Aurela M, Tuovinen JP, Laurila T, Vesala T (2005) Nitrous oxide emissions from a municipal landfill. Environ Sci Technol 39:7790–7793Google Scholar
  28. Shah HN, Olsen I, Bernard K, Finegold SM, Gharbia S, Gupta RS (2009) Approaches to the study of the systematics of anaerobic, gram-negative, non-sporeforming rods: current status and perspectives. Anaerobe 15(5):179–194CrossRefPubMedGoogle Scholar
  29. Song L-Y, Wang Y-Q (2015) Investigation of microbial community structure of a shallow lake after one season copper sulfate algaecide treatment. Microbiol Res 170:105–113CrossRefPubMedGoogle Scholar
  30. Song L, Shi L, Zhao Y, Li H (2011) Novel engineering controls to increase leachate contaminant degradation by refuse: from lab test to in situ engineering application. Ecol Eng 37(11):1914–1919CrossRefGoogle Scholar
  31. Song L, Wang Y, Tang W, Lei Y (2015a) Archaeal community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99(14):6125–6137CrossRefPubMedGoogle Scholar
  32. Song L, Wang Y, Tang W, Lei Y (2015b) Bacterial community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99(18):7745–7756CrossRefPubMedGoogle Scholar
  33. Song L, Li L, Yang S, Lan J, He H, McElmurry SP, Zhao YC (2016) Sulfamethoxazole, tetracycline and Oxytetracycline and related antibiotic resistance genes in a large-scale landfill, China. Sci Total Environ 551-552:9–15. doi: 10.1016/j.scitotenv.2016.02.007 CrossRefPubMedGoogle Scholar
  34. Staley BF, de los Reyes FL, Barlaz MA (2011) Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl Environ Microbiol 77(7):2381–2391. doi: 10.1128/aem.02349-10 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Staley BF, Francis L, Barlaz MA (2012) Comparison of bacteria and archaea communities in municipal solid waste, individual refuse components, and leachate. FEMS Microbiol Ecol 79(2):465–473CrossRefPubMedGoogle Scholar
  36. Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, URL http://www.R-project.org/ Google Scholar
  37. ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: Software for Canocical Community Ordination. version 4.5Google Scholar
  38. Townsend TG, Miller WL, Lee HJ, Earle JFK (1996) Acceleration of landfill stabilization using leachate recycle. Journal of Environmental Engineering-Asce 122(4):263–268. doi: 10.1061/(asce)0733-9372(1996)122:4(263) CrossRefGoogle Scholar
  39. Van Dyke MI, McCarthy AJ (2002) Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol 68(4):2049–2053. doi: 10.1128/aem.68.4.2049-2053.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi: 10.1128/aem.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang Y, Zhu G, Song L, Wang S, Yin C (2014) Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil. J Basic Microbiol 54(3):190–197CrossRefPubMedGoogle Scholar
  42. Zhao Y, Song L, Huang R, Song L, Li X (2007) Recycling of aged refuse from a closed landfill. Waste Manag Res 25(2):130–138CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Environmental Microbiology and Ecology Research Center, Chongqing Institute of Green and Intelligent TechnologyChinese Academy of ScienceChongqingChina
  2. 2.Department of Geology and GeophysicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations