Advertisement

Applied Microbiology and Biotechnology

, Volume 86, Issue 1, pp 27–40 | Cite as

Biotechnological production of lutein and its applications

  • José M. Fernández-Sevilla
  • F. G. Acién Fernández
  • E. Molina Grima
Mini-Review

Abstract

Lutein is an antioxidant that has gathered increasing attention due to its potential role in preventing or ameliorating age-related macular degeneration. Currently, it is produced from marigold oleoresin, but continuous reports of lutein-producing microalgae pose the question if those microorganisms can become an alternative source. Several microalgae have higher lutein contents than most marigold cultivars and have been shown to yield productivities hundreds of times higher than marigold crops on a per square meter basis. Microalgae and marigold are opposite alternatives in the use of resources such as land and labor and the prevalence of one or the other could change in the future as the lutein demand rises and if labor or land becomes more restricted or expensive in the producing countries. The potential of microalgae as a lutein source is analyzed and compared to marigold. It is suggested that, in the current state of the art, microalgae could compete with marigold even without counting on any of the improvements in microalgal technology that can be expected in the near future.

Keywords

Lutein Microalgae Extraction Photobioreactor Mass production 

References

  1. Arnal E, Miranda M, Almansa I, Muriach M, Barcia JM, Romero FJ, Diaz-Llopis M, Bosch-Morell F (2009) Lutein prevents cataract development and progression in diabetic rats. Graefes Arch Clin Exp Ophthalmol 247(1):115–120CrossRefGoogle Scholar
  2. Bendich A, Olson JA (1989) Biological actions of carotenoids. FASEB J 3:1927–1932Google Scholar
  3. Bermejo R, Ruiz E, Acién FG (2007) Recovery of B-phycoerythrin using expanded bed adsorption chromatography: scale-up of the process. Enzyme Microb Technol 40(4):927–933CrossRefGoogle Scholar
  4. Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73:1259–1266CrossRefGoogle Scholar
  5. Carpentier S, Knaus M, Suh M (2009) Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Crit Rev Food Sci Nutr 49(4):313–326CrossRefGoogle Scholar
  6. Ceron MC, Campos I, Sánchez JF, Acien FG, Molina E, Fernandez-Sevilla JM (2008) Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis. J Agric Food Chem 56:11761–11766CrossRefGoogle Scholar
  7. Chiu CJ, Taylor A (2007) Nutritional antioxidants and age-related cataract and macular degeneration. Exp Eye Res 84:229–245CrossRefGoogle Scholar
  8. Coleman H, Chew E (2007) Nutritional supplementation in age-related macular degeneration. Curr Opin Ophthalmol 18:220–223CrossRefGoogle Scholar
  9. Crnobarac J, Jaćimović G, Marinković B, Mircov VD, Mrđa J, Babić M (2009) Dynamics of pot marigold yield formation depended by varieties and row distance. Nat Prod Commun 4(1):35–38Google Scholar
  10. Del Campo JA, Moreno J, Rodriguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59CrossRefGoogle Scholar
  11. Del Campo JA, Rodrıguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295CrossRefGoogle Scholar
  12. Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854CrossRefGoogle Scholar
  13. Del Campo JA, Garcia-Gonzalez M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74(6):1163–1174CrossRefGoogle Scholar
  14. Delgado-Vargas F, Jiménez AR, Paredes-López O, Francis FJ (2000) Crit Rev Food Sci Nutr 40(3):173–289CrossRefGoogle Scholar
  15. Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1(1):21–26CrossRefGoogle Scholar
  16. Demmig-Adams B, Adams WW III (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153CrossRefGoogle Scholar
  17. Diaz-Avelar J, Barrios JA, Jiménez B (2004) Effect of the application of acid treated biosolids on marigold (Tagetes erecta) development. Water Sci Technol 50(9):33–40Google Scholar
  18. Failla M, Chitchumroonchokchai C (2005) In vitro models as tools for screening the relative bioavailabilities of provitamin A carotenoids in foods. Technical Monographs Series 3, HarvestPlusGoogle Scholar
  19. Farrow WM, Tabenkin K (1966) Process for the preparation of lutein. US Patent 3,280,502Google Scholar
  20. Fernández-Sevilla JM, Molina Grima E, Perez Parra J, Acien Fernandez FG, Magan Cañadas JJ, Friedl T (2005) Novel microalgal species and use thereof for animal and/or human consumption and in the production of carotenoids. Spanish Patent P200500374, International Application 06725770.9-1212-ES2006000072Google Scholar
  21. Fernández-Sevilla JM, Acien Fernandez FG, Perez-Parra J, Magán Cañadas JJ, Granado-Lorencio F, Olmedilla B (2008) Large-scale production of high-content lutein extracts from S. almeriensis. Proceedings of the 11th International Conference on Applied Phycology, Galway, IrelandGoogle Scholar
  22. Gao Y, Nagy B, Liu X, Simándi B, Wang Q (2009) Supercritical CO2 extraction of lutein esters from marigold (Tagetes erecta L.) enhanced by ultrasound. J Supercrit Fluids 49:345–350CrossRefGoogle Scholar
  23. Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Br J Nutr 90:487–502CrossRefGoogle Scholar
  24. Granado-Lorencio F, Herrero-Barbudo C, Acién-Fernandez FG, Molina-Grima E, Fernandez-Sevilla JM, Perez-Sacristan B, Blanco-Navarro I (2009) In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chem 114:747–752CrossRefGoogle Scholar
  25. Herrero M, Martín-Álvarez PJ, Señoráns FJ, Cifuentes A, Ibáñez E (2005) Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chem 93(3):417–423CrossRefGoogle Scholar
  26. Hojnik M, Skerget M, Knez Z (2008) Extraction of lutein from marigold flower petals—experimental kinetics and modelling. Lebensm-Wiss Technol 41:2008–2016Google Scholar
  27. Ishida BK, Chapman MH (2009) Carotenoid extraction from plants using a novel, environmentally friendly solvent. J Agric Food Chem 57:1051–1059CrossRefGoogle Scholar
  28. John JH, Ziebland S, Yudkin P, Roe LS, Neil HAW (2002) Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomised controlled trial. Lancet 359(9322):1969–1974CrossRefGoogle Scholar
  29. Khachik F (2007) Process for extraction and purification of lutein, zeaxanthin and rare carotenoids from marigold flowers and plants. US Patent 7,173,145Google Scholar
  30. Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S, Hasegawa T (2009) Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J Chem Technol Biotechnol 84(5):657–661CrossRefGoogle Scholar
  31. Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–203CrossRefGoogle Scholar
  32. Lahaye M (2006) Marine algae as sources of fibres: determination of soluble and insoluble dietary fibre contents in some “sea vegetables”. J Sci Food Agric 54(4):587–594CrossRefGoogle Scholar
  33. Lakshminarayana R, Raju M, Krishnakantha TP, Baskaran V (2006) Enhanced lutein bioavailability by lyso-phosphatidylcholine in rats. Mol Cell Biochem 281:103–110CrossRefGoogle Scholar
  34. Li H, Jiang Y, Chen F (2002) Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. J Agric Food Chem 50:1070–1072CrossRefGoogle Scholar
  35. Macías-Sánchez MD, Mantell C, Rodríguez M, Martínez de la Ossa E, Lubián LM, Montero O (2005) Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J Food Eng 66:245–251CrossRefGoogle Scholar
  36. Macías-Sánchez MD, Mantell Serrano C, Rodríguez Rodríguez M, Martínez de la Ossa E, Lubián LM, Montero O (2008) Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. J Sep Sci 31:1352–1362CrossRefGoogle Scholar
  37. Macías-Sánchez MD, Mantell Serrano C, Rodríguez Rodríguez M, Martínez de la Ossa E (2009a) Kinetics of the supercritical fluid extraction of carotenoids from microalgae with CO2 and ethanol as cosolvent. Chem Eng J 150:104–113CrossRefGoogle Scholar
  38. Macías-Sánchez MD, Mantell C, Rodríguez M, Martínez de la Ossa E, Lubián LM, Montero O (2009b) Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 77:948–952CrossRefGoogle Scholar
  39. Matsukawa R, Hotta M, Masuda Y, Chihara M, Karube I (2000) Antioxidants from carbon dioxide fixing Chlorella sorokiniana. J Appl Phycol 12:263–267CrossRefGoogle Scholar
  40. Miguel F, Martin A, Mattea F, Cocero MJ (2008) Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chem Eng Process 47:1594–1602Google Scholar
  41. Mínguez-Mosquera I, Gandul-Rojas M, Lourdes B, Gallardo-Guerrero M (1992) Rapid method of quantification of chlorophylls and carotenoids in virgin olive oil by high-performance liquid chromatography. J Agric Food Chem 40(1):60–63CrossRefGoogle Scholar
  42. Navarrete-Bolaños JL, Rangel-Cruz CL, Jimenez-Islas H, Botello-Alvarez E, Rico-Martınez R (2005) Pre-treatment effects on the extraction efficiency of xanthophylls from marigold flower (Tagetes erecta) using hexane. Food Res Int 38:159–165CrossRefGoogle Scholar
  43. Nonomura AM (1987) Process for producing a naturally-derived carotene/oil composition by direct extraction from algae. US Patent 4,680,314Google Scholar
  44. O'Neill ME, Carroll Y, Corridan B, Olmedilla B, Granado F, Blanco Y (2001) A European carotenoid database to assess carotenoid intakes and its use in a five-country comparative study. Br J Nutr 85(4):499–507CrossRefGoogle Scholar
  45. Piccaglia R, Marotti M, Grandi S (1998) Lutein and lutein esterc ontent in different types of Tagetes patula and T. erecta. Ind Crops Prod 8:45–51CrossRefGoogle Scholar
  46. Qingxiang M, Xiang X, Yanxiang G, Qi W, Jian Z (2008) Optimisation of supercritical carbon dioxide extraction of lutein esters from marigold (Tagetes erect L.) with soybean oil as a co-solvent. Int J Food Sci Technol 43:1763–1769CrossRefGoogle Scholar
  47. Ramesh K, Singh V (2008) Effect of planting date on growth, development, aerial biomass partitioning and essential oil productivity of wild marigold (Tagetes minuta) in mid hills of Indian western Himalaya. Ind Crops Prod 27(3):380–384CrossRefGoogle Scholar
  48. Roberts RL, Green J, Lewis B (2009) Lutein and zeaxanthin in eye and skin health. Clin Dermatol 27(2):195–201CrossRefGoogle Scholar
  49. Sánchez F, Fernández JM, Acien FG, Rueda A, Perez-Parra J, Molina E (2008a) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43(4):398–405Google Scholar
  50. Sánchez JF, Fernández-Sevilla JM, Acién FG, Cerón MC, Pérez-Parra J, Molina-Grima E (2008b) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79(5):719–729CrossRefGoogle Scholar
  51. Semba RD, Dagnelie G (2003) Are lutein and zeaxanthin conditionally essential nutrients for eye health? Med Hypotheses 61(4):465–472CrossRefGoogle Scholar
  52. Shen Y, Hu Y, Huang K, Yin S, Chen B, Yao S (2009) Solid-phase extraction of carotenoids. J Chromatogr 1216(30):5763–5768CrossRefGoogle Scholar
  53. Shi X, Zhang X, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318CrossRefGoogle Scholar
  54. Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18(4):723–727CrossRefGoogle Scholar
  55. Shi X, Wu Z, Chen F (2006) Kinetic modelling of lutein production by heterotrophic Chlorella at various pH and temperatures. Mol Nutr Food Res 50(8):763–768CrossRefGoogle Scholar
  56. Wei D, Chen F, Chen G, Zhang XW, Liu LJ, Zhang H (2008) Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci China Ser C Life Sci 51(12):1088–1093CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • José M. Fernández-Sevilla
    • 1
  • F. G. Acién Fernández
    • 1
  • E. Molina Grima
    • 1
  1. 1.Department of Chemical EngineeringUniversity of AlmeríaAlmeríaSpain

Personalised recommendations