Skip to main content
Log in

Biotechnological production of lutein and its applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lutein is an antioxidant that has gathered increasing attention due to its potential role in preventing or ameliorating age-related macular degeneration. Currently, it is produced from marigold oleoresin, but continuous reports of lutein-producing microalgae pose the question if those microorganisms can become an alternative source. Several microalgae have higher lutein contents than most marigold cultivars and have been shown to yield productivities hundreds of times higher than marigold crops on a per square meter basis. Microalgae and marigold are opposite alternatives in the use of resources such as land and labor and the prevalence of one or the other could change in the future as the lutein demand rises and if labor or land becomes more restricted or expensive in the producing countries. The potential of microalgae as a lutein source is analyzed and compared to marigold. It is suggested that, in the current state of the art, microalgae could compete with marigold even without counting on any of the improvements in microalgal technology that can be expected in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnal E, Miranda M, Almansa I, Muriach M, Barcia JM, Romero FJ, Diaz-Llopis M, Bosch-Morell F (2009) Lutein prevents cataract development and progression in diabetic rats. Graefes Arch Clin Exp Ophthalmol 247(1):115–120

    Article  Google Scholar 

  • Bendich A, Olson JA (1989) Biological actions of carotenoids. FASEB J 3:1927–1932

    CAS  Google Scholar 

  • Bermejo R, Ruiz E, Acién FG (2007) Recovery of B-phycoerythrin using expanded bed adsorption chromatography: scale-up of the process. Enzyme Microb Technol 40(4):927–933

    Article  CAS  Google Scholar 

  • Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73:1259–1266

    Article  CAS  Google Scholar 

  • Carpentier S, Knaus M, Suh M (2009) Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Crit Rev Food Sci Nutr 49(4):313–326

    Article  CAS  Google Scholar 

  • Ceron MC, Campos I, Sánchez JF, Acien FG, Molina E, Fernandez-Sevilla JM (2008) Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis. J Agric Food Chem 56:11761–11766

    Article  CAS  Google Scholar 

  • Chiu CJ, Taylor A (2007) Nutritional antioxidants and age-related cataract and macular degeneration. Exp Eye Res 84:229–245

    Article  CAS  Google Scholar 

  • Coleman H, Chew E (2007) Nutritional supplementation in age-related macular degeneration. Curr Opin Ophthalmol 18:220–223

    Article  Google Scholar 

  • Crnobarac J, Jaćimović G, Marinković B, Mircov VD, Mrđa J, Babić M (2009) Dynamics of pot marigold yield formation depended by varieties and row distance. Nat Prod Commun 4(1):35–38

    Google Scholar 

  • Del Campo JA, Moreno J, Rodriguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59

    Article  Google Scholar 

  • Del Campo JA, Rodrıguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295

    Article  Google Scholar 

  • Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854

    Article  Google Scholar 

  • Del Campo JA, Garcia-Gonzalez M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74(6):1163–1174

    Article  CAS  Google Scholar 

  • Delgado-Vargas F, Jiménez AR, Paredes-López O, Francis FJ (2000) Crit Rev Food Sci Nutr 40(3):173–289

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1(1):21–26

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Article  CAS  Google Scholar 

  • Diaz-Avelar J, Barrios JA, Jiménez B (2004) Effect of the application of acid treated biosolids on marigold (Tagetes erecta) development. Water Sci Technol 50(9):33–40

    CAS  Google Scholar 

  • Failla M, Chitchumroonchokchai C (2005) In vitro models as tools for screening the relative bioavailabilities of provitamin A carotenoids in foods. Technical Monographs Series 3, HarvestPlus

  • Farrow WM, Tabenkin K (1966) Process for the preparation of lutein. US Patent 3,280,502

  • Fernández-Sevilla JM, Molina Grima E, Perez Parra J, Acien Fernandez FG, Magan Cañadas JJ, Friedl T (2005) Novel microalgal species and use thereof for animal and/or human consumption and in the production of carotenoids. Spanish Patent P200500374, International Application 06725770.9-1212-ES2006000072

  • Fernández-Sevilla JM, Acien Fernandez FG, Perez-Parra J, Magán Cañadas JJ, Granado-Lorencio F, Olmedilla B (2008) Large-scale production of high-content lutein extracts from S. almeriensis. Proceedings of the 11th International Conference on Applied Phycology, Galway, Ireland

  • Gao Y, Nagy B, Liu X, Simándi B, Wang Q (2009) Supercritical CO2 extraction of lutein esters from marigold (Tagetes erecta L.) enhanced by ultrasound. J Supercrit Fluids 49:345–350

    Article  CAS  Google Scholar 

  • Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Br J Nutr 90:487–502

    Article  CAS  Google Scholar 

  • Granado-Lorencio F, Herrero-Barbudo C, Acién-Fernandez FG, Molina-Grima E, Fernandez-Sevilla JM, Perez-Sacristan B, Blanco-Navarro I (2009) In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chem 114:747–752

    Article  CAS  Google Scholar 

  • Herrero M, Martín-Álvarez PJ, Señoráns FJ, Cifuentes A, Ibáñez E (2005) Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chem 93(3):417–423

    Article  CAS  Google Scholar 

  • Hojnik M, Skerget M, Knez Z (2008) Extraction of lutein from marigold flower petals—experimental kinetics and modelling. Lebensm-Wiss Technol 41:2008–2016

    CAS  Google Scholar 

  • Ishida BK, Chapman MH (2009) Carotenoid extraction from plants using a novel, environmentally friendly solvent. J Agric Food Chem 57:1051–1059

    Article  CAS  Google Scholar 

  • John JH, Ziebland S, Yudkin P, Roe LS, Neil HAW (2002) Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomised controlled trial. Lancet 359(9322):1969–1974

    Article  CAS  Google Scholar 

  • Khachik F (2007) Process for extraction and purification of lutein, zeaxanthin and rare carotenoids from marigold flowers and plants. US Patent 7,173,145

  • Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S, Hasegawa T (2009) Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J Chem Technol Biotechnol 84(5):657–661

    Article  CAS  Google Scholar 

  • Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–203

    Article  CAS  Google Scholar 

  • Lahaye M (2006) Marine algae as sources of fibres: determination of soluble and insoluble dietary fibre contents in some “sea vegetables”. J Sci Food Agric 54(4):587–594

    Article  Google Scholar 

  • Lakshminarayana R, Raju M, Krishnakantha TP, Baskaran V (2006) Enhanced lutein bioavailability by lyso-phosphatidylcholine in rats. Mol Cell Biochem 281:103–110

    Article  CAS  Google Scholar 

  • Li H, Jiang Y, Chen F (2002) Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. J Agric Food Chem 50:1070–1072

    Article  CAS  Google Scholar 

  • Macías-Sánchez MD, Mantell C, Rodríguez M, Martínez de la Ossa E, Lubián LM, Montero O (2005) Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J Food Eng 66:245–251

    Article  Google Scholar 

  • Macías-Sánchez MD, Mantell Serrano C, Rodríguez Rodríguez M, Martínez de la Ossa E, Lubián LM, Montero O (2008) Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. J Sep Sci 31:1352–1362

    Article  Google Scholar 

  • Macías-Sánchez MD, Mantell Serrano C, Rodríguez Rodríguez M, Martínez de la Ossa E (2009a) Kinetics of the supercritical fluid extraction of carotenoids from microalgae with CO2 and ethanol as cosolvent. Chem Eng J 150:104–113

    Article  Google Scholar 

  • Macías-Sánchez MD, Mantell C, Rodríguez M, Martínez de la Ossa E, Lubián LM, Montero O (2009b) Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 77:948–952

    Article  Google Scholar 

  • Matsukawa R, Hotta M, Masuda Y, Chihara M, Karube I (2000) Antioxidants from carbon dioxide fixing Chlorella sorokiniana. J Appl Phycol 12:263–267

    Article  CAS  Google Scholar 

  • Miguel F, Martin A, Mattea F, Cocero MJ (2008) Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chem Eng Process 47:1594–1602

    CAS  Google Scholar 

  • Mínguez-Mosquera I, Gandul-Rojas M, Lourdes B, Gallardo-Guerrero M (1992) Rapid method of quantification of chlorophylls and carotenoids in virgin olive oil by high-performance liquid chromatography. J Agric Food Chem 40(1):60–63

    Article  Google Scholar 

  • Navarrete-Bolaños JL, Rangel-Cruz CL, Jimenez-Islas H, Botello-Alvarez E, Rico-Martınez R (2005) Pre-treatment effects on the extraction efficiency of xanthophylls from marigold flower (Tagetes erecta) using hexane. Food Res Int 38:159–165

    Article  Google Scholar 

  • Nonomura AM (1987) Process for producing a naturally-derived carotene/oil composition by direct extraction from algae. US Patent 4,680,314

  • O'Neill ME, Carroll Y, Corridan B, Olmedilla B, Granado F, Blanco Y (2001) A European carotenoid database to assess carotenoid intakes and its use in a five-country comparative study. Br J Nutr 85(4):499–507

    Article  Google Scholar 

  • Piccaglia R, Marotti M, Grandi S (1998) Lutein and lutein esterc ontent in different types of Tagetes patula and T. erecta. Ind Crops Prod 8:45–51

    Article  CAS  Google Scholar 

  • Qingxiang M, Xiang X, Yanxiang G, Qi W, Jian Z (2008) Optimisation of supercritical carbon dioxide extraction of lutein esters from marigold (Tagetes erect L.) with soybean oil as a co-solvent. Int J Food Sci Technol 43:1763–1769

    Article  Google Scholar 

  • Ramesh K, Singh V (2008) Effect of planting date on growth, development, aerial biomass partitioning and essential oil productivity of wild marigold (Tagetes minuta) in mid hills of Indian western Himalaya. Ind Crops Prod 27(3):380–384

    Article  CAS  Google Scholar 

  • Roberts RL, Green J, Lewis B (2009) Lutein and zeaxanthin in eye and skin health. Clin Dermatol 27(2):195–201

    Article  Google Scholar 

  • Sánchez F, Fernández JM, Acien FG, Rueda A, Perez-Parra J, Molina E (2008a) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43(4):398–405

    Google Scholar 

  • Sánchez JF, Fernández-Sevilla JM, Acién FG, Cerón MC, Pérez-Parra J, Molina-Grima E (2008b) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79(5):719–729

    Article  Google Scholar 

  • Semba RD, Dagnelie G (2003) Are lutein and zeaxanthin conditionally essential nutrients for eye health? Med Hypotheses 61(4):465–472

    Article  CAS  Google Scholar 

  • Shen Y, Hu Y, Huang K, Yin S, Chen B, Yao S (2009) Solid-phase extraction of carotenoids. J Chromatogr 1216(30):5763–5768

    Article  CAS  Google Scholar 

  • Shi X, Zhang X, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318

    Article  CAS  Google Scholar 

  • Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18(4):723–727

    Article  CAS  Google Scholar 

  • Shi X, Wu Z, Chen F (2006) Kinetic modelling of lutein production by heterotrophic Chlorella at various pH and temperatures. Mol Nutr Food Res 50(8):763–768

    Article  CAS  Google Scholar 

  • Wei D, Chen F, Chen G, Zhang XW, Liu LJ, Zhang H (2008) Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci China Ser C Life Sci 51(12):1088–1093

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Fernández-Sevilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Sevilla, J.M., Acién Fernández, F.G. & Molina Grima, E. Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86, 27–40 (2010). https://doi.org/10.1007/s00253-009-2420-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2420-y

Keywords

Navigation