Skip to main content
Log in

A study on the secondary structure of the metalloregulatory protein CueR: effect of pH, metal ions and DNA

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The response of CueR towards environmental changes in solution was investigated. CueR is a bacterial metal ion selective transcriptional metalloregulator protein, which controls the concentration of copper ions in the cell. Although several articles have been devoted to the discussion of the structural and functional features of this protein, CueR has not previously been extensively characterized in solution. Here, we studied the effect of change in pH, temperature, and the presence of specific or non-specific binding partners on the secondary structure of CueR with circular dichroism (CD) spectroscopy. A rather peculiar reversible pH-dependent secondary structure transformation was observed, elucidated and supplemented with pKa estimation by PROPKA and CpHMD simulations suggesting an important role of His(76) and His(94) in this process. CD experiments revealed that the presence of DNA prevents this structural switch, suggesting that DNA locks CueR in the α-helical-rich form. In contrast to the non-cognate metal ions HgII, CdII and ZnII, the presence of the cognate AgI ion affects the secondary structure of CueR, most probably by stabilizing the metal ion and DNA-binding domains of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso DOV, DeArmond SJ, Cohen FE, Daggett V (2001) Mapping the early steps in the pH-induced conformational conversion of the prion protein. Proc Natl Acad Sci 98:2985–2989

    Article  CAS  PubMed  Google Scholar 

  • Alonso DOV, An C, Daggett V (2002) Simulations of biomolecules: characterization of the early steps in the pH-induced conformational conversion of the hamster, bovine and human forms of the prion protein. Phil Trans Roy Soc London Ser A Math Phys Eng Sci 360:1165–1178

    Article  CAS  Google Scholar 

  • Anderson DE, Becktel WJ, Dahlquist FW (1990) pH-Induced denaturation of proteins: a single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry 29:2403–2408

    Article  CAS  PubMed  Google Scholar 

  • Andoy NM, Sarkar SK, Wang Q, Panda D, Benítez JJ, Kalininskiy A, Chen P (2009) Single-molecule study of metalloregulator CueR-DNA interactions using engineered holliday junctions. Biophys J 97:844–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthis NJ, Clore GM (2013) Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci 22:851–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balogh RK, Gyurcsik B, Hunyadi-Gulyás É, Christensen HEM, Jancsó A (2016) Advanced purification strategy for CueR, a cysteine containing copper(I) and DNA binding protein. Prot Expr Purif 123:90–96

    Article  CAS  Google Scholar 

  • Balogh RK, Gyurcsik B, Hunyadi-Gulyás É, Schell J, Thulstrup PW, Hemmingsen L, Jancsó A (2019) C-terminal cysteines of CueR act as auxiliary metal site ligands upon HgII binding—a mechanism to prevent transcriptional activation by divalent metal ions? Chem Eur J 25:15030–15035

    Article  CAS  PubMed  Google Scholar 

  • Balogh RK, Gyurcsik B, Jensen M, Thulstrup PW, Köster U, Christensen NJ, Mørch FJ, Jensen ML, Jancsó A, Hemmingsen L (2020) Flexibility of the CueR metal site probed by instantaneous change of element and oxidation state from AgI to CdII. Chem Eur J 26:7451–7457

    Article  CAS  PubMed  Google Scholar 

  • Bañares-Hidalgo A, Pérez-Gil J, Estrada P (2014) Acidic pH triggers conformational changes at the NH2-terminal propeptide of the precursor of pulmonary surfactant protein B to form a coiled coil structure. Biochim Biophys Acta - Biomembranes 1838:1738–1751

    Article  Google Scholar 

  • Baptista AM, Martel PJ, Petersen SB (1997) Simulation of protein conformational freedom as a function of pH: constant-pH molecular dynamics using implicit titration. Proteins Struct Funct Bioinform 27:523–544

    Article  CAS  Google Scholar 

  • Baruah A, Biswas P (2015) Designing pH induced fold switch in proteins. J Chem Phys 142:185102

    Article  PubMed  Google Scholar 

  • Boyken SE, Benhaim MA, Busch F, Jia M, Bick MJ, Choi H, Klima JC, Chen Z, Walkey C, Mileant A, Sahasrabuddhe A, Wei KY, Hodge EA, Byron S, Quijano-Rubio A, Sankaran B, King NP, Lippincott-Schwartz J, Wysocki VH, Lee KK, Baker D (2019) De novo design of tunable, pH-driven conformational changes. Science 364:658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of ZntA in Escherichia coli. Mol Microbiol 31:893–902

    Article  CAS  PubMed  Google Scholar 

  • Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    Article  CAS  PubMed  Google Scholar 

  • Cabra V, Arreguin R, Vazquez-Duhalt R, Farres A (2006) Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein. Biochim Biophys Acta Proteins Proteomics 1764:1110–1118

    Article  CAS  Google Scholar 

  • Carius AB, Rogne P, Duchoslav M, Wolf-Watz M, Samuelsson G, Shutova T (2019) Dynamic pH-induced conformational changes of the PsbO protein in the fluctuating acidity of the thylakoid lumen. Physiol Plantarum 166:288–299

    Article  CAS  Google Scholar 

  • Case DA, Cheatham Iii TE, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavet JS, Meng W, Pennella MA, Appelhoff RJ, Giedroc DP, Robinson NJ (2002) A nickel–cobalt-sensing ArsR-SmtB family repressor: contributions of cytosol and effector binding sites to metal selectivity. J Biol Chem 277:38441–38448

    Article  CAS  PubMed  Google Scholar 

  • Changela A, Chen K, Xue Y, Holschen J, Outten CE, Halloran TV, Mondragón A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383

    Article  CAS  PubMed  Google Scholar 

  • Chen T-Y, Santiago AG, Jung W, Krzemiński Ł, Yang F, Martell DJ, Helmann JD, Chen P (2015) Concentration- and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells. Nat Commun 6:7445

    Article  PubMed  PubMed Central  Google Scholar 

  • Chivers PT, Prehoda KE, Volkman BF, Kim B-M, Markley JL, Raines RT (1997) Microscopic pKa values of Escherichia coli thioredoxin. Biochemistry 36:14985–14991

    Article  CAS  PubMed  Google Scholar 

  • Cochran DAE, Penel S, Doig AJ (2001) Effect of the N1 residue on the stability of the α-helix for all 20 amino acids. Protein Sci 10:463–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Russo NV, Estrin DA, Martí MA, Roitberg AE (2012) pH-dependent conformational changes in proteins and their effect on experimental pK(a)s: The case of nitrophorin 4. PLoS Computat Biol 8:e1002761

    Article  Google Scholar 

  • Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucl Acids Res 32:W665–W667

    Article  CAS  PubMed  Google Scholar 

  • Georgieva ER, Narvaez AJ, Hedin N, Gräslund A (2008) Secondary structure conversions of Mycobacterium tuberculosis ribonucleotide reductase protein R2 under varying pH and temperature conditions. Biophys Chem 137:43–48

    Article  CAS  PubMed  Google Scholar 

  • Golynskiy MV, Gunderson WA, Hendrich MP, Cohen SM (2006) Metal binding studies and EPR spectroscopy of the manganese transport regulator MntR. Biochemistry 45:15359–15372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimsley GR, Scholtz JM, Pace CN (2009) A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci 18:247–251

    CAS  PubMed  Google Scholar 

  • Hansson T, Oostenbrink C, van Gunsteren W (2002) Molecular dynamics simulations. Curr Opin Struct Biol 12:190–196

    Article  CAS  PubMed  Google Scholar 

  • Harrison Joseph S, Higgins Chelsea D, O’Meara Matthew J, Koellhoffer Jayne F, Kuhlman Brian A, Lai Jonathan R (2013) Role of electrostatic repulsion in controlling pH-dependent conformational changes of viral fusion proteins. Structure 21:1085–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobman JL, Wilkie J, Brown NL (2005) A Design for Life: prokaryotic metal-binding MerR family regulators. Biometals 18:429–436

    Article  CAS  PubMed  Google Scholar 

  • Jancsó A, Szunyogh D, Larsen FH, Thulstrup PW, Christensen NJ, Gyurcsik B, Hemmingsen L (2011) Towards the role of metal ions in the structural variability of proteins: CdII speciation of a metal ion binding loop motif. Metallomics 3:1331–1339

    Article  PubMed  Google Scholar 

  • Jancsó A, Gyurcsik B, Mesterházy E, Berkecz R (2013) Competition of zinc(II) with cadmium(II) or mercury(II) in binding to a 12-mer peptide. J Inorg Biochem 126:96–103

    Article  PubMed  Google Scholar 

  • Johnson WC Jr (1999) Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins Struct Funct Genet 35:307–312

    Article  CAS  PubMed  Google Scholar 

  • Kannan S, Shankar R, Kolandaivel P (2019) Insights into structural and inhibitory mechanisms of low pH-induced conformational change of influenza HA2 protein: a computational approach. J Mol Model 25:99

    Article  CAS  PubMed  Google Scholar 

  • Kelly JW (1998) The environmental dependency of protein folding best explains prion and amyloid diseases. Proc Natl Acad Sci 95:930–932

    Article  CAS  PubMed  Google Scholar 

  • Kiyoko W, Toshihisa M, Jun-ichi O, Toshiki T (2003) pH-induced conformational change in an α-helical coiled-coil is controlled by His residues in the hydrophobic core. Protein Pept Lett 10:27–33

    Article  Google Scholar 

  • Kun R, Szekeres M, Dékány I (2009) Isothermal titration calorimetric studies of the pH induced conformational changes of bovine serum albumin. J Therm Anal Calorimetry 96:1009–1017

    Article  CAS  Google Scholar 

  • Langella E, Improta R, Barone V (2004) Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: effect of protonation of histidine residues. Biophys J 87:3623–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lees JG, Miles AJ, Wien F, Wallace BA (2006) A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics 22:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Leloup N, Lössl P, Meijer DH, Brennich M, Heck AJR, Thies-Weesie DME, Janssen BJC (2017) Low pH-induced conformational change and dimerization of sortilin triggers endocytosed ligand release. Nat Commun 8:1708

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins Struct Funct Bioinformat 61:704–721

    Article  CAS  Google Scholar 

  • Liu X, Hu Q, Yang J, Huang S, Wei T, Chen W, He Y, Wang D, Liu Z, Wang K, Gan J, Chen H (2019) Selective cadmium regulation mediated by a cooperative binding mechanism in CadR. Proc Natl Acad Sci 116:20398

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Cowart DM, Scott RA, Giedroc DP (2009) Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis. Biochemistry 48:3325–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micsonai A, Wien F, Kernya L, Lee Y-H, Goto Y, Réfrégiers M, Kardos J (2015) Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci 112:E3095–E3103

    Article  CAS  PubMed  Google Scholar 

  • Micsonai A, Wien F, Bulyáki É, Kun J, Moussong É, Lee YH, Goto Y, Réfrégiers M, Kardos J (2018) BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucl Acids Res 46(W1):W315–W322

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Kumar A, Ali V, Zhang KYJ, Nozaki T (2015) Characterization of pH-induced transitions of Entamoeba histolytica d-phosphoglycerate dehydrogenase. Int J Biol Macromol 79:284–289

    Article  CAS  PubMed  Google Scholar 

  • Nar H, Messerschmidt A, Huber R, van de Kamp M, Canters GW (1991) Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5·5 and pH 9·0: A pH-induced conformational transition involves a peptide bond flip. J Mol Biol 221:765–772

    Article  CAS  PubMed  Google Scholar 

  • Németh E, Balogh RK, Borsos K, Czene A, Thulstrup PW, Gyurcsik B (2016) Intrinsic protein disorder could be overlooked in cocrystallization conditions: an SRCD case study. Protein Sci 25:1977–1988

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen PA, Soto CS, Polishchuk A, Caputo GA, Tatko CD, Ma C, Ohigashi Y, Pinto LH, DeGrado WF, Howard KP (2008) pH-induced conformational change of the Influenza M2 protein C-terminal domain. Biochemistry 47:9934–9936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira ASF, Campos SRR, Baptista AM, Soares CM (2016) Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations. Biochim Biophys Acta Bioenerg 1857:759–771

    Article  CAS  Google Scholar 

  • Outten CE, Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488

    Article  CAS  PubMed  Google Scholar 

  • Papadakos G, Sharma A, Lancaster LE, Bowen R, Kaminska R, Leech AP, Walker D, Redfield C, Kleanthous C (2015) Consequences of inducing intrinsic disorder in a high-affinity protein-protein interaction. J Am Chem Soc 137:5252–5255

    Article  CAS  PubMed  Google Scholar 

  • Peintler G, Nagypál I, Jancsó A, Epstein IR, Kustin K (1997) Extracting experimental information from large matrixes. 1. A new algorithm for the application of matrix rank analysis. J Phys Chem A 101:8013–8020

    Article  CAS  Google Scholar 

  • Perilla JR, Goh BC, Cassidy CK, Liu B, Bernardi RC, Rudack T, Yu H, Wu Z, Schulten K (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31:64–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philips SJ, Canalizo-Hernandez M, Yildirim I, Schatz GC, Mondragón A, O’Halloran TV (2015) Transcription. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 349:877–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips CM, Schreiter ER, Guo Y, Wang SC, Zamble DB, Drennan CL (2008) Structural basis of the metal specificity for nickel regulatory protein NikR. Biochemistry 47:1938–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puhar A, Johnson EA, Rossetto O, Montecucco C (2004) Comparison of the pH-induced conformational change of different clostridial neurotoxins. Biochem Biophys Res Commun 319:66–71

    Article  CAS  PubMed  Google Scholar 

  • PyMOL (2015) The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC

  • Rademacher C, Masepohl B (2012) Copper-responsive gene regulation in bacteria. Microbiology 158:2451–2464

    Article  CAS  PubMed  Google Scholar 

  • Ralston DM, Halloran TV (1990) Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc Natl Acad Sci 87:3846

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Caballero H, Campanello GC, Giedroc DP (2011) Metalloregulatory proteins: Metal selectivity and allosteric switching. Biophys Chem 156:103–114

    Article  CAS  PubMed  Google Scholar 

  • Sameach H, Narunsky A, Azoulay-Ginsburg S, Gevorkyan-Aiapetov L, Zehavi Y, Moskovitz Y, Juven-Gershon T, Ben-Tal N, Ruthstein S (2017) Structural and dynamics characterization of the MerR family metalloregulator CueR in its repression and activation states. Structure 25:988-996.e983

    Article  CAS  PubMed  Google Scholar 

  • Socher E, Sticht H (2016) Mimicking titration experiments with MD simulations: a protocol for the investigation of pH-dependent effects on proteins. Sci Rep 6:22523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoyanov JV, Brown NL (2003) The Escherichia coli copper-responsive copA promoter is activated by gold. J Biol Chem 278:1407–1410

    Article  CAS  PubMed  Google Scholar 

  • Stoyanov JV, Hobman JL, Brown NL (2001) CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–512

    Article  CAS  PubMed  Google Scholar 

  • Summers AO (2009) Damage control: regulating defenses against toxic metals and metalloids. Curr Opin Microbiol 12:138–144

    Article  CAS  PubMed  Google Scholar 

  • Swails JM, York DM, Roitberg AE (2014) Constant pH replica exchange molecular dynamics in explicit solvent using discrete protonation states: implementation, testing, and validation. J Chem Theory Comput 10:1341–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szunyogh D, Gyurcsik B, Larsen FH, Stachura M, Thulstrup PW, Hemmingsen L, Jancsó A (2015a) ZnII and HgII binding to a designed peptide that accommodates different coordination geometries. Dalton Trans 44:12576–12588

    Article  CAS  PubMed  Google Scholar 

  • Szunyogh D, Szokolai H, Thulstrup PW, Larsen FH, Gyurcsik B, Christensen NJ, Stachura M, Hemmingsen L, Jancsó A (2015b) Specificity of the metalloregulator CueR for monovalent metal ions: possible functional role of a coordinated thiol? Angew Chem Int Ed 54:15756–15761

    Article  CAS  Google Scholar 

  • Thurlkill RL, Grimsley GR, Scholtz JM, Pace CN (2006) pK values of the ionizable groups of proteins. Protein Sci 15:1214–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Huang S, Liu P, Liu X, He Y, Chen W, Hu Q, Wei T, Gan J, Ma J, Chen H (2016) Structural analysis of the Hg(II)-regulatory protein Tn501 MerR from Pseudomonas aeruginosa. Sci Rep 6:33391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitford D (2005) Proteins: Structure and Function. John Wiley & Sons, Ltd., The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ.

  • Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucl Acids Res 32:W668-673

    Article  CAS  PubMed  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  PubMed  Google Scholar 

  • Whitmore L, Miles AJ, Mavridis L, Janes RW, Wallace BA (2017) PCDDB: new developments at the protein circular dichroism data bank. Nucleic Acids Res 45(D1):D303–D307

    Article  CAS  PubMed  Google Scholar 

  • Whitmore L, Mavridis L, Wallace BA, Janes RW (2018) DichroMatch at the protein circular dichroism data bank (DM@PCDDB): a web-based tool for identifying protein nearest neighbors using circular dichroism spectroscopy. Protein Sci 27:10–13

    Article  CAS  PubMed  Google Scholar 

  • Yeo KJ, Hong Y-S, Jee J-G, Lee JK, Kim HJ, Park J-W, Kim E-H, Hwang E, Kim S-Y, Lee E-G, Kwon O, Cheong H-K (2014) Mechanism of the pH-induced conformational change in the sensor domain of the DraK histidine kinase via the E83, E105, and E107 residues. PLoS ONE 9:e107168

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo SH, Albanesi JP (1991) High capacity, low affinity Ca2+ binding of chromogranin A. Relationship between the pH-induced conformational change and Ca2+ binding property. J Biol Chem 266:7740–7745

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the Hungarian National Research, Development and Innovation Office (GINOP-2.3.2-15-2016-00038 and K_16/120130), from the CALIPSOplus (EU Framework Programme for Research and Innovation HORIZON 2020, grant no. 730872) and from the COST Action CA15126 ARBRE MOBIEU is gratefully acknowledged. R.K.B. got a fellowship within the frame of NFTÖ-18 (NTP-NFTÖ-18-B-0137) New National Excellence Program of the Ministry of Human Capacities. The authors thank to Ferenc Bartha for useful discussions on CpHMD simulations, and Peter Waaben Thulstrup for his useful pieces of advice during SRCD measurements. National Information Infrastructure Development (NIIF) Programme is acknowledged for providing the supercomputing infrastructure at University of Debrecen (Debrecen2 server).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Gyurcsik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: COST Action CA15126, MOBIEU: Between atom and cell.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1808 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balogh, R.K., Németh, E., Jones, N.C. et al. A study on the secondary structure of the metalloregulatory protein CueR: effect of pH, metal ions and DNA. Eur Biophys J 50, 491–500 (2021). https://doi.org/10.1007/s00249-021-01539-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-021-01539-z

Keywords

Navigation