Skip to main content
Log in

Thermal fluctuations of DNA enclosed by glycerol–water glassy matrices: an elastic neutron scattering investigation

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Through elastic neutron scattering measurements, we investigated the thermal fluctuations of DNA enclosed by glycerol–water glassy matrices, at different levels of hydration, over the wide temperature range from 20 to 300 K. For all the samples, the extracted hydrogen mean square displacements (MSD) show a purely vibrational harmonic trend at very low temperatures, and a first onset of anharmonic dynamics above ∼100 K. Such onset is consistent with the activation of DNA methyl group rotational motions. Then, at a certain temperature T d, the MSD show a second onset of anharmonicity, which corresponds to the DNA dynamical transition. The T d values vary as a function of the hydration degree of the environment. The crucial role of the solvent mobility to activate the DNA thermal fluctuations is proposed, together with a preferential hydration effect of the DNA phosphate groups. Finally, a comparison between the average mobility of homologous samples of DNA and the lysozyme protein is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bée M (1988) Quasielastic neutron scattering. In: Adam Hilger (ed) Bristol

  • Bonner G, Klibanov AM (1999) Structural stability of DNA in nonaqueous solvents. Biotechnol Bioeng 68:339–344

    Article  Google Scholar 

  • Brauns EB, Murphy CJ, Berg MA (1998) Local dynamics in DNA by temperature-dependent stokes shifts of an intercalated dye. J Am Chem Soc 120:2449–2456

    Article  Google Scholar 

  • Caliskan G, Briber RM, Thirumalai D, Garcia-Sakai V, Woodson SA, Sokolov AP (2006) Dynamic transition in tRNA is solvent induced. J Am Chem Soc 128:32–33

    Article  Google Scholar 

  • Chargaff E, Lipshitz R, Green C, Hodes ME (1951) The composition of the desoxyribonucleic acid of salmon sperm. J Biol Chem 192:223–230

    Google Scholar 

  • Cornicchi E, Onori G, Paciaroni A (2005) Picosecond-time-scale fluctuations of proteins in glassy matrices: the role of viscosity. Phys Rev Lett 95:158104(1)–158104(4)

    Article  ADS  Google Scholar 

  • Cornicchi E, Marconi M, Onori G, Paciaroni A (2006) Controlling the protein dynamical transition with sugar-based bioprotectant matrices: a neutron scattering study. Biophys J 91:289–297

    Article  Google Scholar 

  • Cornicchi E, Capponi S, Marconi M, Onori G, Paciaroni A (2007) Temperature dependence of fast fluctuations in single- and double-stranded DNA molecules. A neutron scattering investigation. Phila Mag 87(3–5):509–515

    Article  ADS  Google Scholar 

  • Doster W, Cusack S, Petry W (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337:754–756

    Article  ADS  Google Scholar 

  • Fenimore PW, Frauenfelder H, McMahon BH, Young RD (2004) Bulk-solvent and hydration-shell fluctuations, similar to α- and β-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci USA 101:14408–14413

    Article  ADS  Google Scholar 

  • Franösc T, Götze W, Mair M, Singh AP (1997) Evolution of structural relaxation spectra of glycerol within the gigahertz band. Phys Rev E 55:3183–3190

    Article  ADS  Google Scholar 

  • Gekko K, Timasheff S (1981) Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry 20:4677–4686

    Article  Google Scholar 

  • Götze W (1991) Liquids, freezing and the glass transition. North Holland, Amsterdam

    Google Scholar 

  • Lovesey S (1988) Theory of neutron scattering from condensed matter. Oxford University Press, Oxford

    Google Scholar 

  • Nicolaou KC, Tsay S-C, Suzuki T, Joyce GF (1992) DNA-carbohydrate interactions. specific binding of the calicheamicin yl I oligosaccharide with duplex DNA. J Am Chem Soc 114:7555–7557

    Article  Google Scholar 

  • O’Neill M A, Barton JK (2004) DNA-mediated charge transport requires conformational motion of the DNA bases: elimination of charge transport in rigid glasses at 77 K. J Am Chem Soc 126:13234–13235

    Article  Google Scholar 

  • Paloma LG, Smith JA, Chazin WJ, Nicolaou KC (1994) Interaction of calicheamicin with duplex DNA: role of the oligosaccharide domain and identification of multiple binding modes. J Am Chem Soc 116:3697–3708

    Article  Google Scholar 

  • Paciaroni A, Cinelli S, Onori G (2002) Effect of the environment on the protein dynamical transition: a neutron scattering study. Biophys J 83:1157–1164

    Google Scholar 

  • Paciaroni A, Cinelli S, Cornicchi E, De Francesco A, Onori G (2005) Fast fluctuations in protein powders: the role of hydration. Chem Phys Lett 410:400–403

    Article  ADS  Google Scholar 

  • Paciaroni A, Cornicchi E, De Francesco A, Marconi M, Onori G (2006) Conditioning action of the environment on the protein dynamics studied through elastic neutron scattering. Eur Biophys Lett 35:591–599

    Article  Google Scholar 

  • Poole PL, Finney JL (1983) Sequential hydration of a dry globular protein. Biopolymers 22:255–260

    Article  Google Scholar 

  • Printz MP, von Hippel PH (1965) Hydrogen exchange studies of DNA structure. Proc Natl Acad Sci USA 53:363–370

    Article  ADS  Google Scholar 

  • Pullman B, Pullman A, Berthod H, Gresh N (1975) Quantummechanical studies of environmental effects on biomolecules. IV. Ab initio studies on the hydration scheme of the phosphate group. Theor Chim Acta 40:93–111

    Article  Google Scholar 

  • Roh JH, Novikov VN, Gregory RB, Curtis JE, Chowdhuri Z, Sokolov AP (2005) Onsets of anharmonicity in protein dynamics. Phys Rev Lett 95:038101(1)–038101(4)

    Article  ADS  Google Scholar 

  • Schneider B, Patel K, Berman H (1998) Hydration of the phosphate group in double-helical DNA. Biophys J 75:2422–2434

    Article  Google Scholar 

  • Smith JC (1991) Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. Q Rev Biophys 24:1–65

    ADS  Google Scholar 

  • Sokolov AP, Grimm H, Kisliuk A, Dianoux AJ (2001) Slow relaxation process in DNA. J Biol Phys 27:313–327

    Article  Google Scholar 

  • Tarek M, Tobias DJ (2000) The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments. Biophys J 74:3244–3257

    Google Scholar 

  • Timasheff SN (1995) Preferential interactions of water and cosolvents with proteins In: Gregory R (ed) Protein–solvent interactions. Dekker, New York, pp 445–482

    Google Scholar 

  • Tran P, Alavi B, Gruner G (2000) Charge transport along the λ-DNA double helix. Phys Rev Lett 85:1564–1567

    Article  ADS  Google Scholar 

  • Vitkup D, Ringe D, Petsko GA, Karplus M (2000) Solvent mobility and the protein ‘glass’ transition. Nat Struct Biol 7:34–38

    Article  Google Scholar 

  • Voityuk AA, Siriwong K, Rösch N (2001) Charge transfer in DNA. Sensitivity of electronic couplings to conformational changes. Phys Chem Chem Phys 3:5421–5425

    Article  Google Scholar 

  • Wang C, Altieri F, Ferraro A, Giartosio A, Turano C (1993) The effect of polyols on the stability of duplex DNA. Physiol Chem Phys Med NMR 25:273–280

    Google Scholar 

  • Zaccai G (2000) How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288:1604–1607

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cornicchi.

Additional information

Advanced neutron scattering and complementary techniques to study biological systems. Contributions from the meetings, “Neutrons in Biology”, STFC Rutherford Appleton Laboratory, Didcot, UK, 11–13 July and “Proteins At Work 2007”, Perugia, Italy, 28–30 May 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornicchi, E., Capponi, S., Marconi, M. et al. Thermal fluctuations of DNA enclosed by glycerol–water glassy matrices: an elastic neutron scattering investigation. Eur Biophys J 37, 583–590 (2008). https://doi.org/10.1007/s00249-008-0268-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0268-1

Keywords

Navigation