Skip to main content

Advertisement

Log in

The Development and Structure of the Ventricles in the Human Heart

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Over the past decade, much has been learned concerning the origin and development of the ventricles. However, most, if not all, of the new information has come from study of the mouse heart. Most of this information has yet to be assimilated by those who study ventricular function or diagnose congenitally malformed hearts. Nevertheless, the evidence available from recent studies, particularly if it can be shown relevant to human development, is remarkably pertinent to these topics. For example, knowledge of how each ventricle derives its inlet and outlet components, information available for human development (Lamers et al., Circulation 86:1194–1205, 1992), provides a firm foundation for understanding congenital cardiac malformations, particularly those dependent on a functionally univentricular circulation (Jacobs and Anderson, Cardiol Young 16(Suppl 1):3–8, 2006). Appreciation of ventricle development also is important with regard to understanding the basis of so-called ventricular noncompaction because this knowledge will elucidate whether the compact component of the ventricular walls is produced by consolidation of the initially extensive trabecular zone seen during early development or by defective formation and/or maturation of the compact myocardium (Anderson, Eur Heart J 29:10–11, 2008). Knowledge concerning the mechanism whereby ventricular myocytes are packed within the compact component of the ventricular walls then will help clarify the architectural arrangement of the aggregated myocytes, a topic of considerable recent interest. This review discusses all these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abu-Issa R, Waldo K, Kirby ML (2004) Heart fields: one, two, or more? Dev Biol 272:281–285

    Article  PubMed  CAS  Google Scholar 

  2. Anderson RH (1972) The disposition and innervation of atrioventricular ring specialized tissue in rats and rabbits. J Anat 113:197–211

    PubMed  CAS  Google Scholar 

  3. Anderson RH (2008) Ventricular noncompaction: a frequently ignored finding? Eur Heart J 29:10–11

    Article  PubMed  Google Scholar 

  4. Buckberg GD (2002) Basic science review: the helix and the heart. J Thorac Cardiovasc Surg 124:863–883

    Article  PubMed  Google Scholar 

  5. Cai CL, Liang X, Shi Y et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    Article  PubMed  CAS  Google Scholar 

  6. Christoffels VM, Habets PE, Franco D et al (2000) Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 223:266–278

    Article  PubMed  CAS  Google Scholar 

  7. Davis CL (1927) Development of the human heart from its first appearance to the stage found in embryos of twenty paired somites. Contrib Embryol 19:245–284

    Google Scholar 

  8. Davis DL, Edwards AV, Juraszek AL et al (2001) A GATA-6 gene heart-region-specific enhancer provides a novel means to mark and probe a discrete component of the mouse cardiac conduction system. Mech Dev 108:105–119

    Article  PubMed  CAS  Google Scholar 

  9. Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181

    Article  PubMed  CAS  Google Scholar 

  10. Dorri F, Niederer PF, Redmann K et al (2007) An analysis of the spatial arrangement of the myocardial aggregates making up the wall of the left ventricle. Eur J Cardiothorac Surg 31:430–437

    Article  PubMed  Google Scholar 

  11. Harrington KB, Rodriguez F, Cheng A et al (2005) Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricel: new implications for wall-thickening mechanics. Am J Physiol Heart Circ Physiol 288:H1324–H1330

    Article  PubMed  CAS  Google Scholar 

  12. Hirschy A, Schatzmann F, Ehler E, Perriard JC (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289:430–441

    Article  PubMed  CAS  Google Scholar 

  13. Jacobs ML, Anderson RH (2006) Nomenclature of the functionally univentricular heart. Cardiol Young 16(Suppl 1):3–8

    Article  PubMed  Google Scholar 

  14. Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440

    Article  PubMed  CAS  Google Scholar 

  15. Lamers WH, Wessels A, Verbeek FJ et al (1992) New findings concerning ventricular septation in the human heart: implications for maldevelopment. Circulation 86:1194–1205

    PubMed  CAS  Google Scholar 

  16. LeGrice IJ, Smaill BH, Chai LZ et al (1995) Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol 269:H571–H582

    PubMed  CAS  Google Scholar 

  17. Lev M, Simkins CS (1956) Architecture of the human ventricular myocardium: technique for study using a modification of the Mall-MacCallum method. Lab Invest 8:306–409

    Google Scholar 

  18. Lunkenheimer PP, Redmann K, Kling N et al (2006) Three-dimensional architecture of the left ventricular myocardium. Anat Rec A Discov Mol Cell Evol Biol 288:565–578

    PubMed  Google Scholar 

  19. Lunkenheimer PP, Redmann K, Westermann P et al (2006) The myocardium and its fibrous matrix working in concert as a spatially netted mesh: a critical review of the purported tertiary structure of the ventricular mass. Eur J Cardiothorac Surg 29(Suppl 1):S41–S49

    Article  PubMed  Google Scholar 

  20. Mall FP (1911) On the muscular architecture of the ventricles of the human heart. Am J Anat 11:211–278

    Article  Google Scholar 

  21. Manner J (1993) Experimental study on the formation of the epicardium in chick embryos. Anat Embryol Berl 187:281–289

    Article  PubMed  CAS  Google Scholar 

  22. Merki E, Zamora M, Raya A et al (2005) Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci USA 102:18455–18460

    Article  PubMed  CAS  Google Scholar 

  23. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R et al (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238:97–109

    Article  PubMed  CAS  Google Scholar 

  24. Moorman AFM, Christoffels VM (2003) Cardiac Chamber formation: Development, genes, and evolution. Physiol Rev 83:1223–1267

    PubMed  CAS  Google Scholar 

  25. Moorman AFM, Christoffels VM, Anderson RH, van den Hoff MJB (2007) The heart-forming fields: one or multiple? Phil Trans Roy Soc Biol 362:1257–1265

    Article  Google Scholar 

  26. Pennisi DJ, Ballard VL, Mikawa T (2003) Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn 228:161–172

    Article  PubMed  CAS  Google Scholar 

  27. Perez-Pomares JM, Phelps A, Sedmerova M et al (2002) Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol 247:307–326

    Article  PubMed  CAS  Google Scholar 

  28. Pettigrew JB (1864) On the arrangement of the muscular fibres in the ventricles of the vertebrate heart, with physiological remarks. Philos Trans 154:445–500

    Article  Google Scholar 

  29. Phillips HM, Rhee HJ, Murdoch JN et al (2007) Disruption of planar cell polarity signalling results in congenital heart defects and cardiomyopathy attributable to early cardiomyocyte disorganisation. Circ Res 101:137–145

    Article  PubMed  CAS  Google Scholar 

  30. Phillips HM, Hildreth V, Peat JD et al (2008) Non-cell-autonomous roles for the planar cell polarity gene Vangl2 in development of the coronary circulation. Circ Res 102:615–623

    Article  PubMed  CAS  Google Scholar 

  31. Pope AJ, Sands GB, Smaill BH, LeGrice IG (2008) Three-dimensional transmural organization of perimysial collagen in the heart. Am J Physiol Heart Circ Physiol 295:H1243–H1252

    Article  PubMed  CAS  Google Scholar 

  32. Schmid P, Lunkenheimer PP, Redmann K et al (2007) Statistical analysis of the angle of intrusion of porcine ventricular myocytes from epicardium to endocardium using diffusion tensor magnetic resonance imaging. Anat Rec Hoboken 290:1413–1423

    Article  PubMed  Google Scholar 

  33. Stuckmann I, Evans S, Lassar AB (2003) Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev Biol 255:334–349

    Article  PubMed  CAS  Google Scholar 

  34. Torrent-Guasp F, Kocica MJ, Corno AF et al (2005) Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg 27:191–201

    Article  PubMed  Google Scholar 

  35. Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, Poelmann RE (1999) Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol Berl 199:367–378

    Article  PubMed  CAS  Google Scholar 

  36. Waldo KL, Kumiski DH, Wallis KT et al (2001) Conotruncal myocardium arises from a secondary heart field. Development 128:3179–3188

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

D. J. Henderson is supported by the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah J. Henderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, D.J., Anderson, R.H. The Development and Structure of the Ventricles in the Human Heart. Pediatr Cardiol 30, 588–596 (2009). https://doi.org/10.1007/s00246-009-9390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-009-9390-9

Keywords

Navigation