Skip to main content

Advertisement

Log in

Effect of Optogenetic Stimulus on the Proliferation and Cell Cycle Progression of Neural Stem Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Modulation of stem cell proliferation is a crucial aspect of neural developmental biology and regenerative medicine. To investigate the effect of optical stimulation on neural stem cell proliferation, cells transduced with channelrhodopsin-2 (ChR2) were used to analyze changes in cell proliferation and cell cycle distribution after light stimulation. Blue light significantly inhibited cell proliferation and affected the cell cycle, which increased the percentage of cells in G1 phase and reduced the percentage in S phase. It is likely that the influence of blue light on cell proliferation and the cell cycle was mediated by membrane depolarization, which induced accumulation of p21 and p27 proteins. Our data provide additional specific evidence that membrane depolarization may inhibit neural stem cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Biagiotti T, D’Amico M, Marzi I, Di Gennaro P, Arcangeli A, Wanke E, Olivotto M (2006) Cell renewing in neuroblastoma: electrophysiological and immunocytochemical characterization of stem cells and derivatives. Stem Cells 24:443–453

    Article  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Cheng A, Luo Y, Lu C, Mattson MP, Rao MS, Furukawa K (2004) Membrane properties of rat embryonic multipotent neural stem cells. J Neurochem 88:212–226

    Article  CAS  PubMed  Google Scholar 

  • Chiu S (1991) Functions and distribution of voltage-gated sodium and potassium channels in mammalian Schwann cells. Glia 4:541–558

    Article  CAS  PubMed  Google Scholar 

  • Cho T, Bae JH, Choi HB, Kim SS, McLarnon JG, Suh-Kim H, Kim SU, Min CK (2002) Human neural stem cells: electrophysiological properties of voltage-gated ion channels. Neuroreport 13:1447–1452

    Article  CAS  PubMed  Google Scholar 

  • Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13:65–70

    Article  CAS  PubMed  Google Scholar 

  • Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC (2004) Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42:535–552

    Article  CAS  PubMed  Google Scholar 

  • Fang F, Orend G, Watanabe N, Hunter T, Ruoslahti E (1996) Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 271:499–502

    Article  CAS  PubMed  Google Scholar 

  • Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU (1998) Engraftable human neural stem cells respond to development cues, replace neurons, and express foreign genes. Nat Biotechnol 16:1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Ghiani CA, Yuan X, Eisen AM, Knutson PL, DePinho RA, McBain CJ, Gallo V (1999) Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells. J Neurosci 19:5380–5392

    CAS  PubMed  Google Scholar 

  • He XB, Yi SH, Rhee YH, Kim H, Han YM, Lee SH, Lee H, Park CH, Lee YS, Richardson E, Kim BW (2011) Prolonged membrane depolarization enhances midbrain dopamine neuron differentiation via epigenetic histone modifications. Stem Cells 29:1861–1873

    Article  CAS  PubMed  Google Scholar 

  • Heubach JF, Graf EM, Leutheuser J, Bock M, Balana B, Zahanich I, Christ T, Boxberger S, Wettwer E, Ravens U (2004) Electrophysiological properties of human mesenchymal stem cells. J Physiol 554:659–672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knutson P, Ghiani CA, Zhou JM, Gallo V, McBain CJ (1997) K+ channel expression and cell proliferation are regulated by intracellular sodium and membrane depolarization in oligodendrocyte progenitor cells. J Neurosci 17:2669–2682

    CAS  PubMed  Google Scholar 

  • Lau YT, Wong CK, Luo J, Leung LH, Tsang PF, Bian ZX, Tsang SY (2011) Effects of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers on the proliferation and cell cycle progression of embryonic stem cells. Pflugers Arch 461:191–202

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wang B, Lin W (2008) Cl-channel blockers inhibit cell proliferation and arrest the cell cycle of human ovarian cancer cells. Eur J Gynaecol Oncol 29:267–271

    PubMed  Google Scholar 

  • Liu X, Wang Q, Haydar TF, Bordey A (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lloyd AC, Obermüller F, Staddon S, Barth CF, McMahon M, Land H (1997) Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev 11:663–677

    Article  CAS  PubMed  Google Scholar 

  • MacFarlane SN, Sontheimer H (2000) Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 30:39–48

    Article  CAS  PubMed  Google Scholar 

  • Miesenbock G (2011) Optogenetic control of cells and circuits. Annu Rev Cell Dev Biol 27:731–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Momose-Sato Y, Sato K, Kinoshita M (2007) Spontaneous depolarization waves of multiple origins in the embryonic rat CNS. Eur J Neurosci 25:929–944

    Article  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porlan E, Morante-Redolat JM, Marqués-Torrejón MÁ, Andreu-Agulló C, Carneiro C, Gómez-Ibarlucea E, Soto A, Vidal A, Ferrón SR, Fariñas I (2013) Transcriptional repression of Bmp2 by p21Waf1/Cip1 links quiescence to neural stem cell maintenance. Nat Neurosci 16:1567–1575

    Article  CAS  PubMed  Google Scholar 

  • Rein ML, Deussing JM (2011) The optogenetic (r)evolution. Mol Genet Genom

  • Roovers K, Assoian RK (2000) Integrating the MAP kinase signal into the G 1 phase cell cycle machinery. Bioessays 22:818–826

    Article  CAS  PubMed  Google Scholar 

  • Ross ME (1996) Cell division and the nervous system: regulating the cycle from neural differentiation to death. Trends Neurosci 19:62–68

    Article  CAS  PubMed  Google Scholar 

  • Sewing A, Wiseman B, Lloyd AC, Land H (1997) High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 17:5588–5597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51

    Article  CAS  PubMed  Google Scholar 

  • Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444:707–712

    Article  CAS  PubMed  Google Scholar 

  • Stroh A, Tsai HC, Wang LP, Zhang F, Kressel J, Aravanis A, Santhanam N, Deisseroth K, Konnerth A, Schneider MB (2011) Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells 29:78–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev 5:231–246

    Article  PubMed  Google Scholar 

  • Toettcher JE, Voigt CA, Weiner OD, Lim WA (2011) The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nat Methods 8:35–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tonnesen J, Parish CL, Sorensen AT, Andersson A, Lundberg C, Deisseroth K, Arenas E, Lindvall O, Kokaia M (2011) Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model. PLoS One 6:e17560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang DD, Krueger DD, Bordey A (2003) GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J Physiol 550:785–800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weick JP, Johnson MA, Skroch SP, Williams JC, Deisseroth K, Zhang SC (2010) Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells 28:2008–2016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M (1997) Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 17:5598–5611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yawo H, Asano T, Sakai S, Ishizuka T (2013) Optogenetic manipulation of neural and non-neural functions. Dev Growth Differ 55:474–490

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang LP, Boyden ES, Deisseroth K (2006) Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 3:785–792

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (NSFC 8113001) and (973 Project 2013CB967002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong Jian Zhao or Zheng Qin Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S.J., Weng, C.H., Xu, H.W. et al. Effect of Optogenetic Stimulus on the Proliferation and Cell Cycle Progression of Neural Stem Cells. J Membrane Biol 247, 493–500 (2014). https://doi.org/10.1007/s00232-014-9659-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9659-7

Keywords

Navigation