Skip to main content

Advertisement

Log in

Photo-physiology and morphology reveal divergent warming responses in northern and southern hemisphere seagrasses

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A better understanding of species and population responses to thermal stress is critical to predict changes in their distribution under warming scenarios. Seagrasses are a unique group of marine plants that play fundamental roles in marine environments and provide vital ecosystem services. Nevertheless, previous studies on seagrass thermal tolerance have focused exclusively on a handful of species, with the majority of these remaining virtually unexplored. Moreover, to date, no study has compared the response to thermal stress between northern and southern hemisphere seagrasses. Here, we conducted comparative mesocosm experiments using four seagrass species from the northern (i.e. Mediterranean: Posidonia oceanica, Cymodocea nodosa) and southern (i.e. Australia: Posidonia australis and Zostera muelleri) hemisphere as representative of two different life strategies, i.e. climax (P. oceanica, P. australis) and pioneer (C. nodosa, Z. muelleri). Plants acclimatized to the mesocosm conditions at ambient temperature (i.e. 26 °C) during a 5-week period, were exposed to a simulated marine heatwave (i.e. 32 °C) for 2 weeks. Measurements of plant responses, including photo-physiology, morphology, and pigment content, were performed at the end of the warming exposure. Results showed that warming had no significant effects on photosynthetic performances of northern hemisphere seagrasses while negatively impacted their southern hemisphere counterparts. Similarly, warming favored the growth of northern hemisphere plants, but strongly inhibited the development of southern hemisphere species. Furthermore, photo-physiological and pigment content results suggested pioneer seagrasses better dealt with warming than climax species. Our study provides more insights into the field of seagrass ecology and yields potential implication for future seagrass conservation and restoration activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[Data were taken from World sea temperature of 2020 (https://www.seatemperature.org/ data assessed on the 29th Nov 2020)]

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aires T, Marbà N, Cunha RL, Kendrick GA, Walker DI, Serrão EA, Duarte CM, Arnaud-Haond S (2011) Evolutionary history of the seagrass genus Posidonia. Mar Ecol Prog Ser 421:117–130

    Article  Google Scholar 

  • Arias-Ortiz A, Serrano O, Masqué P, Lavery PS, Mueller U, Kendrick GA, Rozaimi M, Esteban A, Fourqurean JW, Marbà N, Mateo MA, Murray K, Rule MJ, Duarte CM (2018) A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat Clim Change 8:338–344. https://doi.org/10.1038/s41558-018-0096-y

    Article  CAS  Google Scholar 

  • Arnaud-Haond S, Duarte CM, Diaz-Almela E, Marbà N, Sintes T, Serrão EA (2012) Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica. PLoS One 7:e30454. https://doi.org/10.1371/journal.pone.0030454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Bergmann N, Winters G, Rauch G, Eizaguirre C, Gu J, Nelle P, Fricke B, Reusch TBH (2010) Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming. Mol Ecol 19:2870–2883. https://doi.org/10.1111/j.1365-294X.2010.04731.x

    Article  PubMed  Google Scholar 

  • Bertelli CM, Unsworth RKF (2014) Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Mar Pollut Bull 83:425–429. https://doi.org/10.1016/j.marpolbul.2013.08.011

    Article  PubMed  CAS  Google Scholar 

  • Bianchi CN, Morri C (2017) Global sea warming and “tropicalization” of the Mediterranean Sea: biogeographic and ecological aspects. Biogeogr J Integr Biogeogr 24:319–327. https://doi.org/10.21426/b6110129

    Article  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Borghini M, Bryden H, Schroeder K, Sparnocchia S, Vetrano A (2014) The Mediterranean is getting saltier. Ocean Sci 10:693–700

    Article  Google Scholar 

  • Brandão SE, Bulbovas P, Lima MEL, Domingos M (2017) Biochemical leaf traits as indicators of tolerance potential in tree species from the Brazilian Atlantic Forest against oxidative environmental stressors. Sci Total Environ 575:406–417

    Article  PubMed  CAS  Google Scholar 

  • Bulleri F, Eriksson BK, Queirós A, Airoldi L, Arenas F, Arvanitidis C, Bouma TJ, Crowe TP, Davoult D, Guizien K, Iveša L, Jenkins SR, Michalet R, Olabarria C, Procaccini G, Serrão EA, Wahl M, Benedetti-Cecchi L (2018) Harnessing positive species interactions as a tool against climate-driven loss of coastal biodiversity. PLoS Biol 16:e2006852. https://doi.org/10.1371/journal.pbio.2006852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burkholz C, Duarte CM, Garcias-Bonet N (2019) Thermal dependence of seagrass ecosystem metabolism in the Red Sea. Mar Ecol Prog Ser 614:79–90. https://doi.org/10.3354/meps12912

    Article  CAS  Google Scholar 

  • Burkholz C, Garcias-Bonet N, Duarte CM (2020) Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass sediments. Biogeosciences 17:1717–1730. https://doi.org/10.5194/bg-2019-93

    Article  CAS  Google Scholar 

  • Campbell SJ, McKenzie LJ, Kerville SP (2006) Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. J Exp Mar Biol Ecol 330:455–468

    Article  CAS  Google Scholar 

  • Chefaoui RM, Duarte CM, Serrão EA (2018) Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob Change Biol 24:4919–4928

    Article  Google Scholar 

  • Collier CJ, Waycott M (2014) Temperature extremes reduce seagrass growth and induce mortality. Mar Pollut Bull 83:483–490. https://doi.org/10.1016/j.marpolbul.2014.03.050

    Article  PubMed  CAS  Google Scholar 

  • Collier CJ, Ow YX, Langlois L, Uthicke S, Johansson CL, O’Brien KR, Hrebien V, Adams MP (2017) Optimum temperatures for net primary productivity of three tropical seagrass species. Front Plant Sci 8:1446

    Article  PubMed  PubMed Central  Google Scholar 

  • Coma R, Ribes M, Serrano E, Jimé Nez E, Salat J, Pascual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci USA 106:6176–6181

    Article  PubMed  PubMed Central  Google Scholar 

  • Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Change 26:152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002

    Article  Google Scholar 

  • Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in Mediterranean-climate regions. Trends Ecol Evol 11:362–366

    Article  PubMed  CAS  Google Scholar 

  • Darmaraki S, Somot S, Sevault F, Nabat P, Cabos Narvaez WD, Cavicchia L, Djurdjevic V, Li L, Sannino G, Sein DV (2019) Future evolution of Marine Heatwaves in the Mediterranean Sea. Clim Dyn 53:1371–1392. https://doi.org/10.1007/s00382-019-04661-z

    Article  Google Scholar 

  • den Hartog C (1970) The sea-grasses of the World. North-Holland Publication Co., Amsterdam

    Google Scholar 

  • Esposito MP, Nakazato RK, Pedroso ANV, Lima MEL, Figueiredo MA, Diniz AP, Kozovits AR, Domingos M (2018) Oxidant-antioxidant balance and tolerance against oxidative stress in pioneer and non-pioneer tree species from the remaining Atlantic Forest. Sci Total Environ 625:382–393

    Article  PubMed  CAS  Google Scholar 

  • Faria T, Silvério D, Breia E, Cabral R, Abadia A, Abadia J, Pereira JS, Chaves MM (1998) Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiol Plant 102:419–428

    Article  CAS  Google Scholar 

  • Favaretto VF, Martinez CA, Soriani HH, Furriel RPM (2011) Differential responses of antioxidant enzymes in pioneer and late-successional tropical tree species grown under sun and shade conditions. Environ Exp Bot 70:20–28

    Article  CAS  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509

    Article  CAS  Google Scholar 

  • Gattuso J-P, Magnan AK, Bopp L, Cheung WWL, Duarte CM, Hinkel J, Mcleod E, Micheli F, Oschlies A, Williamson P, Billé R, Chalastani VI, Gates RD, Irisson J-O, Middelburg JJ, Pörtner H-O, Rau GH (2018) Ocean solutions to address climate change and its effects on marine ecosystems. Front Mar Sci 5:337. https://doi.org/10.3389/fmars.2018.00337

    Article  Google Scholar 

  • Glenn-Lewin DC, Peet RK, Veblen TT (1992) Plant succession: theory and prediction. Springer Science & Business Media, Berlin

    Google Scholar 

  • Guidetti P, Cristina Buia M, Zupo V, Beatrice M, Guidetti P, Lorenti M, Buia M, Zupo V, Scipione M, Rismondo A, Curiel D (1998) Biomass partitioning in Adriatic seagrass ecosystems (Posidonia oceanica, Cymodocea nodosa, Zostera marina). Rapp Comm Int Mer Médit 35:562–563

    Google Scholar 

  • Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078. https://doi.org/10.1111/j.1529-8817.2012.01224.x

    Article  PubMed  CAS  Google Scholar 

  • Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, Benthuysen JA, Burrows MT, Donat MG, Feng M (2016) A hierarchical approach to defining marine heatwaves. Prog Oceanogr 141:227–238

    Article  Google Scholar 

  • Hyndes GA, Heck KL, Vergés A, Harvey ES, Kendrick GA, Lavery PS, McMahon K, Orth RJ, Pearce A, Vanderklift M, Wernberg T, Whiting S, Wilson S (2016) Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66:938–945. https://doi.org/10.1093/biosci/biw111

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssen T, Bremer K (2004) The age of major monocot groups inferred from 800+ rbcL sequences. Bot J Linn Soc 146:385–398

    Article  Google Scholar 

  • Jarvis JC, Brush MJ, Moore KA (2014) Modeling loss and recovery of Zostera marina beds in the Chesapeake Bay: the role of seedlings and seed-bank viability. Aquat Bot 113:32–45

    Article  Google Scholar 

  • Johnson MR, Williams SL, Lieberman CH, Solbak A (2003) Changes in the abundance of the seagrasses Zostera marina L. (eelgrass) and Ruppia maritima L. (widgeongrass) in San Diego, California, following and El Niño Event. Estuaries 26:106

    Article  Google Scholar 

  • Kuo J, Cambridge ML (1984) A taxonomic study of the Posidonia ostenfeldii complex (Posidoniaceae) with description of four new Australian seagrasses. Aquat Bot 20:267–295

    Article  Google Scholar 

  • Lamb JB, van de Water JAJMJM, Bourne DG, Altier C, Hein MY, Fiorenza EA, Abu N, Jompa J, Harvell CD, Crispr H, States U (2017) Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355:731–733. https://doi.org/10.1126/science.aal1956

    Article  PubMed  CAS  Google Scholar 

  • Larkum AWD, Kendrick GA, Ralph PJ (2018) Seagrasses of Australia: structure, ecology and conservation. Springer, New York

    Book  Google Scholar 

  • Les DH, Crawford DJ, Kimball RT, Moody ML, Landolt E (2003) Biogeography of discontinuously distributed hydrophytes: a molecular appraisal of intercontinental disjunctions. Int J Plant Sci 164:917–932

    Article  Google Scholar 

  • Macreadie PI, Hardy SSS (2018) Response of seagrass “Blue Carbon” stocks to increased water temperatures. Diversity 10:115. https://doi.org/10.3390/d10040115

    Article  CAS  Google Scholar 

  • Marbà N, Duarte CM (2010) Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob Change Biol 16:2366–2375. https://doi.org/10.1111/j.1365-2486.2009.02130.x

    Article  Google Scholar 

  • Marín-Guirao L, Ruiz JM, Sandoval-Gil JM, Bernardeau-Esteller J, Stinco CM, Meléndez-Martínez A (2013) Xanthophyll cycle-related photoprotective mechanism in the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa under normal and stressful hypersaline conditions. Aquat Bot 109:14–24

    Article  CAS  Google Scholar 

  • Marín-Guirao L, Ruiz JM, Dattolo E, Garcia-Munoz R, Procaccini G (2016) Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci Rep 6:28615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marín-Guirao L, Bernardeau-Esteller J, García-Muñoz R, Ramos A, Ontoria Y, Romero J, Pérez M, Ruiz JM, Procaccini G (2018) Carbon economy of Mediterranean seagrasses in response to thermal stress. Mar Pollut Bull 135:617–629

    Article  PubMed  CAS  Google Scholar 

  • Marín-Guirao L, Entrambasaguas L, Ruiz JM, Procaccini G (2019) Heat-stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica. Mol Ecol 28:2486–2501. https://doi.org/10.1111/mec.15089

    Article  PubMed  Google Scholar 

  • Masini RJ, Manning CR (1997) The photosynthetic responses to irradiance and temperature of four meadow-forming seagrasses. Aquat Bot 58:21–36

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. J Exp Bot 51:659–668. https://doi.org/10.1093/jxb/51.345.659

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HM, Yadav NS, Barak S, Lima FP, Sapir Y, Winters G (2020a) Responses of invasive and native populations of the seagrass Halophila stipulacea to simulated climate change. Front Mar Sci 6:812. https://doi.org/10.3389/FMARS.2019.00812

    Article  Google Scholar 

  • Nguyen HM, Kim M, Ralph PJ, Marín-Guirao L, Pernice M, Procaccini G (2020b) Stress memory in seagrasses: first insight into the effects of thermal priming and the role of epigenetic modifications. Front Plant Sci 11:494. https://doi.org/10.3389/FPLS.2020.00494

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen HM, Ralph PJ, Marín-Guirao L, Pernice M, Procaccini G (2021) Seagrasses in an era of ocean warming: a review. Biol Rev. https://doi.org/10.1111/brv.12736 (in Press)

    Article  PubMed  Google Scholar 

  • Olesen B, Enríquez S, Duarte CM, Sand-Jensen K (2002) Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar Ecol Prog Ser 236:89–97

    Article  Google Scholar 

  • Ontoria Y, Cuesta-Gracia A, Ruiz JM, Romero J, Pérez M (2019) The negative effects of short-term extreme thermal events on the seagrass Posidonia oceanica are exacerbated by ammonium additions. PLoS One 14:e0222798. https://doi.org/10.1371/journal.pone.0222798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Ozer T, Gertman I, Kress N, Silverman J, Herut B (2017) Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea. Glob Planet Change 151:60–67. https://doi.org/10.1016/j.gloplacha.2016.04.001

    Article  Google Scholar 

  • Pazzaglia J, Reusch TBH, Terlizzi A, Marin Guirao L, Procaccini G (2021) Prompt phenotypic plasticity under rapid global changes: the intrinsic force for future seagrasses survival. Evol Appl 14:1181–1201. https://doi.org/10.1111/eva.13212

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips RC, Menez EG (1988) Smithsonian contributions to the marine sciences. Smithsonian Institution Press, Washington

    Google Scholar 

  • Procaccini G, Buia MC, Gambi MC, Perez M, Pergent G, Pergent-Martini C, Romero J (2003) Seagrass status and extent along the Mediterranean coasts of Italy, France and Spain. In: Green EP, Short FT, Spalding M (eds) World Atlas of Seagrass: present status and future conservation. University of California Press, Berkeley

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Austria, 2015

  • Ruocco M, De Luca P, Marín-Guirao L, Procaccini G (2019a) Differential leaf age- dependent thermal plasticity in the keystone seagrass Posidonia oceanica. Front Plant Sci 10:1556. https://doi.org/10.3389/fpls.2019.01556

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruocco M, Marín-Guirao L, Procaccini G (2019b) Within- and among-leaf variations in photo-physiological functions, gene expression and DNA methylation patterns in the large-sized seagrass Posidonia oceanica. Mar Biol 166:24. https://doi.org/10.1007/s00227-019-3482-8

    Article  CAS  Google Scholar 

  • Salinas C, Duarte CM, Lavery PS, Masque P, Arias-Ortiz A, Leon JX, Callaghan D, Kendrick GA, Serrano O (2020) Seagrass losses since mid-20th century fuelled CO2 emissions from soil carbon stocks. Glob Change Biol 26:4772–4784

    Article  Google Scholar 

  • Sandoval-Gil JM, Ruiz JM, Marín-Guirao L, Bernardeau-Esteller J, Sánchez-Lizaso JL (2014) Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress. Mar Environ Res 95:39–61

    Article  PubMed  CAS  Google Scholar 

  • Sandrini-Neto L, Camargo M (2014) GAD: an R package for ANOVA designs from general principles. Software

  • Savva I, Bennett S, Roca G, Jordà G, Marbà N (2018) Thermal tolerance of Mediterranean marine macrophytes: vulnerability to global warming. Ecol Evol 8:12032–12043

    Article  PubMed  PubMed Central  Google Scholar 

  • Seddon S, Cheshire AC (2001) Photosynthetic response of Amphibolis antarctica and Posidonia australis to temperature and desiccation using chlorophyll fluorescence. Mar Ecol Prog Ser 220:119–130

    Article  CAS  Google Scholar 

  • Shields EC, Parrish D, Moore K (2019) Short-term temperature stress results in seagrass community shift in a temperate estuary. Estuaries Coasts 42:755–764. https://doi.org/10.1007/s12237-019-00517-1

    Article  Google Scholar 

  • Short FT, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20

    Article  Google Scholar 

  • Smale DA (2020) Impacts of ocean warming on kelp forest ecosystems. New Phytol 225:1447–1454

    Article  PubMed  Google Scholar 

  • Smale DA, Wernberg T, Oliver ECJ, Thomsen M, Harvey BP, Straub SC, Burrows MT, Alexander LV, Benthuysen JA, Donat MG (2019) Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat Clim Change 9:306–312

    Article  Google Scholar 

  • Strydom S, Murray K, Wilson S, Huntley B, Rule M, Heithaus M, Bessey C, Kendrick GA, Burkholder D, Fraser MW, Zdunic K (2020) Too hot to handle: unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Glob Change Biol 26:3525–3538. https://doi.org/10.1111/gcb.15065

    Article  Google Scholar 

  • Telesca L, Belluscio A, Criscoli A, Ardizzone G, Apostolaki ET, Fraschetti S, Gristina M, Knittweis L, Martin CS, Pergent G (2015) Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Sci Rep 5:12505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomasello A, Di Maida G, Calvo S, Pirrotta M, Borra M, Procaccini G (2009) Seagrass meadows at the extreme of environmental tolerance: the case of Posidonia oceanica in a semi-enclosed coastal lagoon. Mar Ecol 30:288–300

    Article  Google Scholar 

  • Trautman DA, Borowitzka MA (1999) Distribution of the epiphytic organisms on Posidonia australis and P. sinuosa, two seagrasses with differing morphology. Mar Ecol Prog Ser 179:215–229. https://doi.org/10.3354/meps179215

    Article  Google Scholar 

  • Tutar O, Marín-Guirao L, Ruiz JM, Procaccini G (2017) Antioxidant response to heat stress in seagrasses. A gene expression study. Mar Environ Res 132:94–102. https://doi.org/10.1016/j.marenvres.2017.10.011

    Article  PubMed  CAS  Google Scholar 

  • Underwood AJ, Underwood AL, Underwood AJ, Wnderwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Google Scholar 

  • Unsworth RKF, Nordlund LM, Cullen-Unsworth LC (2019) Seagrass meadows support global fisheries production. Conserv Lett 12:e12566. https://doi.org/10.1111/conl.12566

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Warren CR (2008) Rapid measurement of chlorophylls with a microplate reader. J Plant Nutr 31:1321–1332

    Article  CAS  Google Scholar 

  • Waycott M, McMahon K, Mellors J, Calladine A, Kleine D (2004) A guide to tropical seagrasses of the Indo-West Pacific. James Cook University, Douglas

    Google Scholar 

  • Waycott M, Procaccini G, Les DH, Reusch TBH (2007) Seagrass evolution, ecology and conservation: a genetic perspective. Seagrasses: biology, ecologyand conservation. Springer, Heidelberg, pp 25–50

    Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106:12377–12381

    Article  PubMed  PubMed Central  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, Saunders BJ, Smale DA, Thomsen MS, Tuckett CA, Tuya F, Vanderklift MA, Wilson S (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 80(353):169–172. https://doi.org/10.1126/science.aad8745

    Article  CAS  Google Scholar 

  • Wickham H (2009) Elegant graphics for data analysis (ggplot2)

  • Winters G, Nelle P, Fricke B, Rauch G, Reusch TBH (2011) Effects of a simulated heat wave on photophysiology and gene expression of high-and low-latitude populations of Zostera marina. Mar Ecol Prog Ser 435:83–95

    Article  Google Scholar 

  • Winters G, Beer S, Willette DA, Viana I, Chiquillo KL, Beca-Carretero P, Betty Villamayor B, Azcárate-García T, Shem-Tov R, Mwabvu B (2020) The tropical seagrass Halophila stipulacea: reviewing what we know from its native and invasive habitats, alongside identifying knowledge gaps. Front Mar Sci 7:300

    Article  Google Scholar 

  • York PH, Gruber RK, Hill R, Ralph PJ, Booth DJ, Macreadie PI (2013) Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature. PLoS One 8:e76377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zieman JC (1974) Methods for the study of the growth and production of turtle grass, Thalassia testudinum König. Aquaculture 4:139–143

    Article  Google Scholar 

Download references

Acknowledgements

HN was supported by an SZN Ph.D. fellowship via the Open University. This work was funded by EPIC-SEA Project, Extra-Eu Scientific Research and Cooperation Grant of the SZN, by the project Marine Hazard, PON03PE_00203_1, Italian Ministry of Education, University and Research (MIUR) and by the project Assemble Plus EU-FP7. The authors are grateful for precious support from Peter J. Ralph, Mikael Kim, Nasim Shah Mohammadi, Paul Brooks, Scott Allchin, Susan Fenech, and Kun Xiao (UTS) for the Aus-mesocosm experiment at UTS, Australia as well as Emanuela Dattolo, Alex Santillán-Sarmiento, Ludovica Pedicini and Jessica Pazzaglia (SZN) for the Med-mesocosm experiment at SZN, Italy. Moreover, the authors thank three anonymous reviewers for many constructive criticisms and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HMN, FB, LM-G, MP, and GP; methodology: HMN, LM-G, MP, and GP; formal analysis and investigation: HMN; writing—original draft preparation: HMN; writing—review and editing: HMN, FB, LM-G, MP, and GP; funding acquisition: FB, LM-G, MP, and GP; resources: MP and GP; supervision: LM-G, MP, and GP.

Corresponding author

Correspondence to Mathieu Pernice.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Responsible Editor: M.Y. Roleda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewers: undisclosed experts.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.M., Bulleri, F., Marín-Guirao, L. et al. Photo-physiology and morphology reveal divergent warming responses in northern and southern hemisphere seagrasses. Mar Biol 168, 129 (2021). https://doi.org/10.1007/s00227-021-03940-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03940-w

Navigation