Skip to main content

Advertisement

Log in

Non-consumptive effects of predator presence on copepod reproduction: insights from a mesocosm experiment

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Reproduction in planktonic animals depends on numerous biotic and abiotic factors. One of them is predation pressure, which can have both direct consumptive effects on population density and sex ratio, and non-consumptive effects, for example on mating and migration behaviour. In copepods, predator vulnerability depends on their sex, motility pattern and mating behaviour. Therefore, copepods can be affected at multiple stages during the mating process. We investigated the reproductive dynamics of the estuarine copepod Eurytemora affinis in the presence and absence of its predator the mysid Neomysis integer in a mesocosm experiment. We found that the proportion of ovigerous females decreased in the presence of predators. This shift was not caused by differential predation as the absolute number of females was unaffected by mysid presence. Presence of predators reduced the ratio of males to non-ovigerous females, but not by predation of males. Our combined results suggest that the shift from ovigerous to non-ovigerous females under the presence of predators was caused by either actively delayed egg production or by shedding of egg sacs. Nauplii production was initially suppressed in the predation treatment, but increased towards the end of the experiment. The proportion of fertilized females was similar in both treatments, but constantly fell behind model predictions using a random mating model. Our results highlight the importance of non-consumptive effects of predators on copepod reproduction and hence on population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aaser FH, Jeepesen E, Søndergaard M (1995) Seasonal dynamics of the mysid Neomysis integer and its predation on the copepod Eurytemora affinis in a shallow hypertrophic brackish lake. Mar Ecol Prog Ser 127:47–56

    Article  Google Scholar 

  • Aks J, Reinikainen M, Båmstedt U (2006) Variation in hatching success and egg production of Eurytemora affinis (Calanoida, Copepoda) from the Gulf of Bothnia, Baltic Sea, in relation to abundance and clonal differences of diatoms. J Plankton Res 28:683–694

    Article  Google Scholar 

  • Ali AK, Primicerio R, Folstad I et al (2009) Morphological correlates of mating frequency and clutch size in wild caught female Eudiaptomus graciloides (Copepoda: Calanoida). J Plankton Res 31:389–397

    Article  Google Scholar 

  • Andersson M (1994) Sexual Selection. Princeton University Press, Princeton

    Google Scholar 

  • Ban S (1994) Effect of temperature and food concentration on post-embryonic development, egg production and adult body size of calanoid copepod Eurytemora affinis. J Plankton Res 16:721–735

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2012) lme4: linear mixed-effects models using S4 classes. R package version 0.999999-0. http://CRAN.R-project.org/package=lme4

  • Blaustein L (1997) Non-consumptive effects of larval Salamandra on crustacean prey: can eggs detect predators? Oecologia 110:212–217

    Article  Google Scholar 

  • Bohr JR, Madison DM (2001) A chemically mediated trade-off between predation risk and mate search in newts. Anim Behav 62:863–869

    Article  Google Scholar 

  • Bollens SM, Frost BW (1991) Ovigerity, selective predation, and variable diel vertical migration in Euchaeta elongata (Copepoda: Calanoida). Oecologia 87:155–161

    Article  Google Scholar 

  • Campbell RW, Head EJ (2000) Egg production rates of Calanus finmarchicus in the western North Atlantic: effect of gonad maturity, female size, chlorophyll concentration, and temperature. Can J Fish Aquat Sci 57:518–529

    Article  Google Scholar 

  • Candolin U (1997) Reproduction under predation risk and the trade-off between current and future reproduction in the threespine stickleback. Proc Roy Soc Lond B Bio 265:1171–1175

    Article  Google Scholar 

  • Ceballos S, Kiørboe T (2010) First evidences of sexual selection by mate choice in marine zooplankton. Oecologia 164:627–635

    Article  Google Scholar 

  • Ceballos S, Kiørboe T (2011) Senescence and sexual selection in a pelagic copepod. PLoS One 6:e18870

    Article  CAS  Google Scholar 

  • Choi K, Kimmerer W (2009) Mating success and its consequences for population growth in an estuarine copepod. Mar Ecol Prog Ser 377:183–191

    Article  Google Scholar 

  • Clutton-Brock T, Rose K, Guinness F (1997) Density-related changes in sexual selection in red deer. Proc Roy Soc Lond B Bio 264:1509–1516

    Article  CAS  Google Scholar 

  • deRivera CE, Backwell PRY, Christy JH, Vehrencamp SL (2003) Density affects female and male mate searching in the Fiddler Crab, Uca beebei. Behav Ecol Sociobiol 53:72–83

    Google Scholar 

  • Devreker D, Souissi S, Molinero JC, Nkubito F (2008) Trade-offs of the copepod Eurytemora affinis in mega-tidal estuaries: insights from high frequency sampling in the Seine estuary. J Plankton Res 30:1329–1342

    Article  Google Scholar 

  • Devreker D, Pierson JJ, Souissi S, Kimmel DG, Roman MR (2012) An experimental approach to estimate egg production and development rate of the calanoid copepod Eurytemora affinis in Chesapeake Bay, USA. J Exp Mar Biol Ecol 416:72–83

    Article  Google Scholar 

  • Dur G, Souissi S, Devreker D, Ginot V, Schmitt FG, Hwang JS (2009) An individual-based model to study the reproduction of egg bearing copepods: application to Eurytemora affinis (Copepoda Calanoida) from the Seine estuary, France. Ecol Mol 220:1073–1089

    Google Scholar 

  • Dur G, Souissi S, Schmitt FG, Cheng SH, Hwang JS (2012) Sex ratio and mating behaviour in the calanoid copepod Pseudodiaptomus annandalei. Zool Stud 51:589–597

    Google Scholar 

  • Edler L (1979) Recommendations on methods for marine biological studies in the Baltic Sea: phytoplankton and chlorophyll. Baltic Mar Biol Publ 5:1–38

    Google Scholar 

  • Finiguerra MB, Dam HG, Avery DE, Burris Z (2013) Sex-specific tolerance to starvation in the copepod Acartia tonsa. J Exp Mar Biol Ecol 446:17–21

    Article  Google Scholar 

  • Fleminger A (1985) Dimorphism and possible sex change in copepods of the family Calanidae. Mar Biol 88:273–294

    Article  Google Scholar 

  • Fontaine JJ, Martin TE (2006) Parent birds assess nest predation risk and adjust their reproductive strategies. Ecol Lett 9:428–434

    Article  CAS  Google Scholar 

  • Forsgren E (1992) Predation risk affects mate choice in a gobiid. Fish Am Nat 140:1041–1049

    Article  Google Scholar 

  • Forsgren E, Kvarnemo C, Lindstrom K (1996) Mode of sexual selection determined by resource abundance in two sand goby populations. Evolution 50:646–654

    Article  Google Scholar 

  • Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder MN, Nielsen A, Sibert J (2012) AD model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249

    Article  Google Scholar 

  • Godin JGJ (1995) Predation risk and alternative mating tactics in male Trinidadian guppies (Poecilia reficulata). Oecologia 103:224–229

    Article  Google Scholar 

  • Godin J, Briggs S (1996) Female mate choice under predation risk in the guppy. Anim Behav 51:117–130

    Article  Google Scholar 

  • Gusmão LFM, McKinnon AD (2009) Sex ratios, intersexuality and sex change in copepods. J Plankton Res 31:1101–1117

    Article  Google Scholar 

  • Gusmão LFM, McKinnon AD, Richardson AJ (2013) No evidence of predation causing female-biased sex ratios in marine pelagic copepods. Mar Ecol Prog Ser 482:279–298

    Article  Google Scholar 

  • Hairston NG Jr, Dillon TA (1990) Fluctuating selection and response in a population of freshwater copepods. Evolution 44:1796–1805

    Article  Google Scholar 

  • Hansson LA (2000) Induced pigmentation in zooplankton: a trade-off between threats from predation and ultraviolet radiation. Proc Roy Soc Lond B 267:2327–2331

    Article  CAS  Google Scholar 

  • Helcom, Baltic Sea Environment (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. Helsinki commission baltic marine environment protection commission: Helsinki, Finland. Proceedings No. 106

  • Heuschele J, Eliassen S, Kiørboe T (2012) Optimal mate choice patterns in pelagic copepods. Oecologia 172:399–408

    Article  Google Scholar 

  • Hirst AG, Kiørboe T (2002) Mortality of marine planktonic copepods: global rates and patterns. Mar Ecol Prog Ser 230:195–209

    Article  Google Scholar 

  • Hirst A, Bonnet D, Conway D, Kiørboe T (2010) Does predation control adult sex ratios and longevities in marine pelagic copepods? Limnol Oceanog 55:2193–2206

    Article  Google Scholar 

  • Irigoien X, Obermüller B, Head RN, Harris RP, Rey C, Hansen BW, Hygum BH, Heath MR, Durbin EG (2000) The effect of food on the determination of sex ratio in Calanus spp.: evidence from experimental studies and field data. ICES J Mar Sci 57:1752–1763

    Article  Google Scholar 

  • Jersabek CD, Luger MS, Schabetsberger R, Grill S, Strickler JR (2007) Hang on or run? Copepod mating versus predation risk in contrasting environments. Oecologia 153:761–773

    Article  Google Scholar 

  • Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch Hydrobiol 109:445–454

    CAS  Google Scholar 

  • Kahan D, Berman Y, Bar-El T (1988) Maternal inhibition of hatching at high population densities in Tigriopus japonicus (Copepoda, Crustacea). Biol Bull 174:139–144

    Article  Google Scholar 

  • Katona SK (1970) Growth characteristics of the copepods Eurytemora affinis and E. herdmani in laboratory cultures. Helgol Mar Res 20:373–384

    Google Scholar 

  • Katona SK (1975) Copulation in the copepod Eurytemora affinis (Poppe, 1880). Crustaceana 28:89–95

    Article  Google Scholar 

  • Kiørboe T (2006) Sex, sex-ratios, and the dynamics of pelagic copepod populations. Oecologia 148:181

    Article  Google Scholar 

  • Kiørboe T (2008) A mechanistic approach to plankton ecology. Princeton University Press, Princeton

    Google Scholar 

  • Kokko H, Jennions M (2008) Parental investment, sexual selection and sex ratios. J Evol Biol 21:919

    Article  Google Scholar 

  • Korpelainen H (1990) Sex ratios and conditions required for environmental sex determination in animals. Biol Rev Camb Philos Soc 65:147–184

    Article  CAS  Google Scholar 

  • Koski M, Schmidt K, Engström-Öst J, Viitasalo M, Jónasdóttir S, Repka S, Sivonen K (2002) Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol Oceanogr 47:878–885

    Article  Google Scholar 

  • Koski M, Swalethorp R, Kjellerup S, Nielsen TG (2014) The mystery of Microsetella: combination of sac-and broadcast-spawning in an Arctic fjord. J Plankton Res 36:259–264

    Article  Google Scholar 

  • Lasley-Rasher RS, Yen J (2012) Predation risk suppresses mating success and offspring production in the coastal marine copepod, Eurytemora herdmani. Limnol Oceanogr 57:433–440

    Article  Google Scholar 

  • Lehtiniemi M, Nordström H (2008) Feeding differences among common littoral mysids, Neomysis integer, Praunus flexuosus and P. inermis. Hydrobiologia 614:309–320

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Loose CJ, Dawidowicz P (1994) Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology 75:2255–2263

    Article  Google Scholar 

  • Lorch P, Proulx S, Rowe L, Day T (2003) Condition-dependent sexual selection can accelerate adaptation. Evol Ecol Res 5:867–881

    Google Scholar 

  • Magnhagen C (1990) Predation risk as a cost of reproduction. Trends Ecol Evol 6:183–185

    Article  Google Scholar 

  • Mahjoub MS, Souissi S, Michalec FG et al (2011) Swimming kinematics of Eurytemora affinis (Copepoda, Calanoida) reproductive stages and differential vulnerability to predation of larval Dicentrarchus labrax (Teleostei, Perciformes). J Plankton Res 33:1095–1103

    Article  Google Scholar 

  • Maier G, Berger I, Burghard W, Nassal B (2000) Is mating of copepods associated with increased risk of predation? J Plankton Res 22:1977–1987

    Article  Google Scholar 

  • Michalec FG, Souissi S, Dur G, Mahjoub MS, Schmitt FG, Hwang JS (2010) Differences in behavioral responses of Eurytemora affinis (Copepoda, Calanoida) reproductive stages to salinity variations. J Plankton Res 32:805–813

    Article  Google Scholar 

  • Motwani NH, Gorokhova E (2013) Mesozooplankton grazing on picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis. PLoS One 8(11):e79230

    Article  Google Scholar 

  • Neill WE (1990) Induced vertical migration in copepods as a defence against invertebrate predation. Nature 345:524–526

    Article  Google Scholar 

  • Ohtsuka S, Huys R (2001) Sexual dimorphism in calanoid copepods: morphology and function. Hydrobiologia 453(454):441–466

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D and the R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1–108

  • Pomiankowski A (1987) The costs of choice in sexual selection. J Theor Biol 128:195–218

    Article  CAS  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine ‘oligotrichous’ ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Article  Google Scholar 

  • Runge JA (1984) Egg production of the marine, planktonic copepod, Calanus pacificus Brodsky: laboratory observations. J Exp Mar Biol Ecol 74:53–66

    Article  Google Scholar 

  • Seuront L (2006) Effect of salinity on the swimming behavior of the estuarine calanoid copepod Eurytemora affinis. J Plankton Res 28:805–813

    Article  Google Scholar 

  • Sichlau M, Kiørboe T (2011) Age- and size-dependent mating performance and fertility in a pelagic copepod, Temora longicornis. Mar Ecol Prog Ser 442:123–132

    Article  Google Scholar 

  • Sih A, Krupa J, Travers S (1990) An experimental study on the effects of predation risk and feeding regime on the mating behavior of the water strider. Am Nat 135:284–290

    Article  Google Scholar 

  • Souissi A, Souiss S, Devreker D, Hwang JS (2010) Occurrence of intersexuality in a laboratory culture of the copepod Eurytemora affinis from the Seine estuary (France). Mar Biol 157:851–861

    Article  Google Scholar 

  • Sullivan JL, Kimmerer WJ (2013) Egg development times of Eurytemora affinis and Pseudodiaptomus forbesi (Copepoda, Calanoida) from the upper San Francisco Estuary with notes on methods. J Plankton Res 0(0):1–8. doi:10.1093/plankt/fbt076

    Google Scholar 

  • Svensson J (1996) Clutch detachment in a copepod after capture by a predator. J Plankton Res 18:1369–1374

    Article  Google Scholar 

  • Titelman J, Varpe Ø, Eliassen S, Fiksen Ø (2007) Copepod mating: chance or choice? J Plankton Res 29:1023–1030

    Article  Google Scholar 

  • Trochine C, Modenutti B, Balseiro E (2005) When prey mating increases predation risk: the relationship between the flatworm Mesostoma ehrenbergii and the copepod Boeckella gracilis. Archiv für Hydrobiologie 163:555–569

    Article  Google Scholar 

  • Turner J (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool Stud 43:255–266

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Verein Limnol 9:1–38

    Google Scholar 

  • van Duren LA, Videler JJ (1996) The trade-off between feeding, mate seeking and predator avoidance in copepods: behavioural responses to chemical cues. J Plankton Res 18:805–818

    Article  Google Scholar 

  • Vuorinen I (1987) Vertical migration of Eurytemora (Crustacea, Copepoda): a compromise between the risks of predation and decreased fecundity. J Plankton Res 9:1037–1046

    Article  Google Scholar 

  • Vuorinen I, Rajasilta M, Salo J (1983) Selective predation and habitat shift in a copepod species—support for the predation hypothesis. Oecologia 59:62–64

    Article  Google Scholar 

  • Wasserman R, Froneman P (2013) Risk effects on copepods: preliminary experimental evidence for the suppression of clutch size by predatory early life-history fish. J Plankton Res 35:421–426

    Article  Google Scholar 

  • Winfield IJ, Townsend CR (1983) The cost of copepod reproduction: increased susceptibility to fish predation. Oecologia 60:406–411

    Article  Google Scholar 

  • Winkler G, Greve W (2004) Trophodynamics of two interacting species of estuarine mysids, Praunus flexuosus and Neomysis integer, and their predation on the calanoid copepod Eurytemora affinis. J Exp Mar Biol Ecol 308:127–146

    Article  Google Scholar 

  • Ylönen H, Ronkainen H (1994) Breeding suppression in the bank vole as antipredatory adaptation in a predictable environment. Evol Ecol 8:658–666

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 228224, MESOAQUA (Grant Number: MESOAQUA 16. COPEPODSEX.HEUSCHELE). J. H. was funded by a Deutsche Forschungsgemeinschaft Research Fellowship (grant number HE 6050/1-1). We especially wish to thank H. Larsson for technical support and the setup of the mesocosms, U. Båmstedt for experimental advice, A. Nielsen for statistical help and T. Kiørboe for discussions. We thank O. Glippa for his help with the counting of developmental stages of some samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Heuschele.

Additional information

Communicated by X. Irigoyen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2014_2449_MOESM1_ESM.tiff

The physical environment in the mesocosms during the experiment, if not otherwise indicate lines indicate the average value over the water column and grey areas indicate confidence limits. O2 concentration measured in µM, PAR in µmol s−1W−1 (TIFF 830 kb)

227_2014_2449_MOESM2_ESM.tif

Phytoplankton composition in the beginning and the end of the experiment with each taxonomic group presented in μg C L−1. Note the different scale of the y axis between sampling dates (TIFF 883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heuschele, J., Ceballos, S., Andersen Borg, C.M. et al. Non-consumptive effects of predator presence on copepod reproduction: insights from a mesocosm experiment. Mar Biol 161, 1653–1666 (2014). https://doi.org/10.1007/s00227-014-2449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2449-z

Keywords

Navigation