Skip to main content
Log in

Optimal mate choice patterns in pelagic copepods

  • Behavioral ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The importance of sexual selection for the evolution, dynamics and adaptation of organisms is well known for many species. However, the topic is rarely studied in marine plankton, the basis of the marine food web. Copepods show behaviors that suggest the existence of sexually selected traits, and recent laboratory experiments identified some selected morphological traits. Here, we use a ‘life history-based’ model of sex roles to determine the optimal choosiness behavior of male and female copepods for important copepod traits. Copepod females are predicted to be choosy at population densities typically occurring during the main breeding season, whereas males are not. The main drivers of this pattern are population density and the difference in non-receptive periods between males and females. This suggests that male reproductive traits have evolved mainly due to mate competition. The model can easily be parameterized for other planktonic organisms, and be used to plan experiments about sexual selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali AK, Primicerio R, Folstad I, Liljedal S, Berge J (2009) Morphological correlates of mating frequency and clutch size in wild caught female Eudiaptomus graciloides (Copepoda: calanoida). J Plankton Res 31:389–397

    Article  Google Scholar 

  • Anstensrud M (1990) Mating strategies of two parasitic copepods [(Lernaeocera branchialis (L.)(Pennellidae) and Lepeophtheirus pectoralis (Müller)(Caligidae)] on flounder: polygamy, sex- specific age at maturity and sex ratio. J Exp Mar Biol Ecol 136:141–158

    Article  Google Scholar 

  • Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164

    Article  PubMed  Google Scholar 

  • Bagøien E, Kiørboe T (2004) Blind dating - mate finding in planktonic copepods. III. Hydrome- chanical communication in Acartia tonsa. Mar Ecol Prog Ser 300:129–133

    Article  Google Scholar 

  • Blades P (1977) Mating behavior of Centropages typicus (Copepoda: calanoida). Mar Biol 40:57–64

    Article  Google Scholar 

  • Burton RS (1985) Mating system of the intertidal copepod Tigriopus californicus. Mar Biol 86:247–252

    Article  Google Scholar 

  • Buskey E, Lenz P, Hartline D (2002) Escape behavior of planktonic copepods in response to hydrodynamic disturbances: high speed video analysis. Mar Ecol Prog Ser 235:135–146

    Article  Google Scholar 

  • Ceballos S, Kiørboe T (2010) First evidences of sexual selection by mate choice in marine zooplankton. Oecologia 164:627–635

    Google Scholar 

  • Ceballos S, Kiørboe T (2011) Senescence and sexual selection in a pelagic copepod. PLoS ONE 6:e18870

    Article  PubMed  CAS  Google Scholar 

  • ChapmanT Liddle L, Kalb J, Wolfner M, Partridge L (1995) Cost of mating in Drosophila melanogaster females is mediated by male accessory-gland products. Nature 373:241–244

    Article  Google Scholar 

  • Corkett CJ, McLaren IA (1969) Egg production and oil storage by the copepod Pseudocalanus in the laboratory. J Exp Mar Biol Ecol 3:90–105

    Article  Google Scholar 

  • Corkett CJ, McLaren IA (1978) The biology of Pseudocalanus. Adv Mar Biol 15:1–231

    Article  Google Scholar 

  • Cornwallis CK, Uller T (2010) Towlatter faces a significantly elevated ards an evolutionary ecology of sexual traits. Trends Ecol Evol 25:145–152

    Article  PubMed  Google Scholar 

  • Digby PSB (1950) The biology of the small planktonic copepods of Plymouth. J Mar Biol Assoc UK 29:393–438

    Article  Google Scholar 

  • Doall M, Colin S, Strickler J, Yen J (1998) Locating a mate in 3D: the case of Temora longicornis. Philos Trans R Soc Lond B 353:681–689

    Article  Google Scholar 

  • Fleminger A (1985) Dimorphism and possible sex change in copepods of the family Calanidae. Mar Biol 88:273–294

    Article  Google Scholar 

  • Fowler K, Partridge L (1989) A cost of mating in female fruitflies. Nature 338:760–761

    Article  Google Scholar 

  • Gusmao LFM, McKinnon AD (2009) Sex ratios, intersexuality and sex change in copepods. J Plankton Res 31:1101–1117

    Article  Google Scholar 

  • Hirst A, Kiørboe T (2002) Mortality of marine planktonic copepods: global rates and patterns. Mar Ecol Prog Ser 230:195–209

    Article  Google Scholar 

  • Hirst AG, Sheader M, Williams JA (1999) Annual pattern of calanoid copepod abundance, prosome length and minor role in pelagic carbon flux in the Solent, UK. Mar Ecol Prog Ser 177:133–146

    Google Scholar 

  • Hirst A, Bonnet D, Conway D, Kiørboe T (2010) Does predation control adult sex ratios and longevities in marine pelagic copepods? Limnol Oceanogr 55:2193–2206

    Article  Google Scholar 

  • Humes AG (1994) How many copepods? Hydrobiologia 292–293:1–7

    Article  Google Scholar 

  • Hylstofte Sichlau M, Kiørboe T (2011) Age- and size-dependent mating performance and fertility in a pelagic copepod, Temora longicornis. Mar Ecol Prog Ser 442:123–132

    Article  Google Scholar 

  • Ianora A, Miralto A, Buttino I, Romano G, Poulet SA (1999) First evidence of some dinoflagellates reducing male copepod fertilization capacity. Limnol Oceanogr 44:147–153

    Article  Google Scholar 

  • Irigoien X, Obermüller B, Head RN, Harris RP, Rey C, Hansen BW, Hygum BH, Heath MR, Durbinal EG (2000) The effect of food on the determination of sex ratio in Calanus spp.: evidence from experimental studies and field data. ICES J Mar Sci 57:1752–1763

    Article  Google Scholar 

  • Jennions MD, Petrie M (1997) Variation in mate choice and mating preferences: a review of causes and consequences. Biol Rev 72:283–327

    Article  PubMed  CAS  Google Scholar 

  • Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev Cambridge Philos Soc 75:21–64

    Article  PubMed  CAS  Google Scholar 

  • Katona SK (1973) Evidence for sex pheromones in planktonic copepods. Limnol Oceanogr 18:574–583

    Article  Google Scholar 

  • Kiørboe T (2007) Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: there are too few males. Limnol Oceanogr 52:1511–1522

    Article  Google Scholar 

  • Kiørboe T (2008) Optimal swimming strategies in mate-searching pelagic copepods. Oecologia 155:179–192

    Article  PubMed  Google Scholar 

  • Kiørboe T, Bagoien E (2005) Motility patterns and mate encounter rates in planktonic copepods. Limnol Oceanogr 50:1999–2007

    Article  Google Scholar 

  • Kiørboe T, Visser AW (1999) Predator and prey perception in copepods due to hydromechanical signals. Mar Ecol Prog Ser 179:81–95

    Article  Google Scholar 

  • Kiørboe T, Bagoien E, Thygesen U (2004) Blind dating—mate finding in planktonic copepods. II. The pheromone cloud of Pseudocalanus elongatus. Mar Ecol Prog Ser 300:117–128

    Article  Google Scholar 

  • Kokko H, Monaghan P (2001) Predicting the direction of sexual selection. Ecol Lett 4:159–165

    Article  Google Scholar 

  • Kokko H, Rankin D (2006) Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philos Trans R Soc Lond B 361:319–334

    Article  Google Scholar 

  • Korpelainen H (1990) Sex ratios and conditions required for environmental sex determination in animals. Biol Rev Cambridge Philos Soc 65:147–184

    Article  PubMed  CAS  Google Scholar 

  • Landry MR (1978) Population dynamics and production of a planktonic marine copepod, Acartia clausii, in a small temperate lagoon on San Juan Island, Washington. Int Rev Ges Hydrobiol 63:77–119

    Article  Google Scholar 

  • Lee WY, McAlice B (1979) Seasonal succession and breeding cycles of three species of Acartia (Copepoda: calanoida) in a Maine estuary. Estuar Coast 2:228–235

    Article  Google Scholar 

  • Maly EJ (1973) Density, size, and clutch of two high altitude diaptomid copepods. Limnol Oceanogr 18:840–848

    Article  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Academic, London

  • Möllmann C, Köster F (2002) Population dynamics of calanoid copepods and the implications of their predation by clupeid fish in the Central Baltic Sea. J Plankton Res 24:959–977

    Article  Google Scholar 

  • Renz J, Mengedoht D, Hirche H (2008) Reproduction, growth and secondary production of Pseudocalanus elongatus Boeck (Copepoda, Calanoida) in the southern North Sea. J Plankton Res 30:511–528

    Article  CAS  Google Scholar 

  • Rodriguez J, Mullin MM (1986) Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol Oceanogr 31:361–370

    Article  Google Scholar 

  • Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380

    Article  PubMed  Google Scholar 

  • Sheldon RW, Prakash A, Sutcliffe WH Jr (1972) The size distribution of particles in the ocean. Limnol Oceanogr 17:327–340

    Article  Google Scholar 

  • Shimanaga M, Shirayama Y (2005) Precopulatory mate guarding of interstitial Phyllopodopsyllus sp. (Copepoda: harpacticoida) in Otsuchi Bay, Northeastern Japan. Benthos Res 60:39–40

    Google Scholar 

  • Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, Princeton

  • Smyly WJP (1968) Number of eggs and body size in the freshwater copepod Diaptomus gracilis Sars in the English Lake District. Oikos 19:323–338

    Article  Google Scholar 

  • Titelman J, Varpe Ø, Eliassen S, Fiksen Ø (2006) Copepod mating: chance or choice? J Plankton Res 29:1023–1030

    Article  Google Scholar 

  • Tsuda A, Miller C (1998) Mate-finding behaviour in Calanus marshallae Frost. Philos Trans R Soc Lond B 353:713–720

    Article  Google Scholar 

  • Uchima M (1985) Copulation in the marine copepod Oithona davisae. I. Mate discrimination. Bull Plankton Soc Jpn 32:23–30

    Google Scholar 

  • Uye S, Sano K (1995) Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar Ecol Prog Ser 118:121–128

    Article  Google Scholar 

  • Visser AW, Mariani P, Pigolotti S (2009) Swimming in turbulence: zooplankton fitness in terms of foraging efficiency and predation risk. J Plankton Res 31:121–133

    Article  Google Scholar 

  • Wilson D, Parrish K (1971) Remating in a planktonic marine calanoid copepod. Mar Biol 9:202–204

    Article  Google Scholar 

  • Yen J, Weissburg M, Doall M (1998) The fluid physics of signal perception by mate-tracking copepods. Philos Trans R Soc Lond B 353:787–804

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ken Anderson and Uffe Høgsbro Thygesen for help with error-functions; Sara Ceballos and Mie Hylstofte Sichlau for input data, and Øyvind Fiksen for discussions, as well as anonymous referees for constructive comments. J.H. was funded by a DFG Research Fellowship (grant number HE 6050/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Heuschele.

Additional information

Communicated by Craig Osenberg.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuschele, J., Eliassen, S. & Kiørboe, T. Optimal mate choice patterns in pelagic copepods. Oecologia 172, 399–408 (2013). https://doi.org/10.1007/s00442-012-2516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2516-4

Keywords

Navigation