Advertisement

Communications in Mathematical Physics

, Volume 365, Issue 2, pp 471–513 | Cite as

Moduli Space of Supersymmetric Solitons and Black Holes in Five Dimensions

  • Veronika Breunhölder
  • James LuciettiEmail author
Open Access
Article

Abstract

We determine all asymptotically flat, supersymmetric and biaxisymmetric soliton and black hole solutions to five-dimensional minimal supergravity. In particular, we show that the solution must be a multi-centred solution with a Gibbons–Hawking base. The proof involves combining local constraints from supersymmetry with global constraints for stationary and biaxisymmetric spacetimes. This reveals that the horizon topology must be one of S3, \({{S}^{1}\times {S}^{2}}\) or a lens space L(p, 1), thereby providing a refinement of the allowed horizon topologies.We construct the general smooth solution for each possible rod structure. We find a large moduli space of black hole spacetimes with noncontractible 2-cycles for each of the allowed horizon topologies. In the absence of a black hole, we obtain a classification of the known ‘bubbling’ soliton spacetimes.

Notes

Acknowledgements

VB is supported by an EPSRC studentship. JL is supported by STFC [ST/L000458/1].

References

  1. 1.
    Chrusciel P.T., Lopes Costa J., Heusler M.: Stationary black holes: uniqueness and beyond. Living Rev. Rel. 15, 7 (2012) arXiv:1205.6112 CrossRefzbMATHGoogle Scholar
  2. 2.
    Emparan R., Reall H.S.: Black holes in higher dimensions.. Living Rev.Rel. 11, 6 (2008) arXiv:0801.3471 CrossRefzbMATHGoogle Scholar
  3. 3.
    Bena I., Warner N.P.: Black holes, black rings and their microstates. Lect. Notes Phys. 755, 1 (2008) arXiv:hep-th/0701216 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gibbons G.W., Warner N.P.: Global structure of five-dimensional fuzzballs. Class. Quant. Grav. 31, 025016 (2014) arXiv:1305.0957 ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Kunduri H.K., Lucietti J.: The first law of soliton and black hole mechanics in five dimensions. Class. Quant. Grav. 31, 032001 (2014) arXiv:1310.4810 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kunduri H.K., Lucietti J.: Black hole non-uniqueness via spacetime topology in five dimensions. JHEP 10, 082 (2014) arXiv:1407.8002 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Horowitz G.T., Kunduri H.K., Lucietti J.: Comments on black holes in bubbling space times. JHEP 06, 048 (2017) arXiv:1704.04071 ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Kunduri H.K., Lucietti J.: Supersymmetric black holes with lens-space topology. Phys. Rev. Lett 113, 211101 (2014) arXiv:1408.6083 ADSCrossRefGoogle Scholar
  9. 9.
    Tomizawa S.M.: Nozawa: Supersymmetric black lenses in five dimensions. Phys. Review D. 94, 4 (2016) arXiv:1606.06643 CrossRefGoogle Scholar
  10. 10.
    Hollands S., Ishibashi A.: Black hole uniqueness theorems in higher dimensional spacetimes. Class. Quant. Grav. 29, 163001 (2012)arXiv:1206.1164 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Friedman J.L., Schleich K., Witt D.M.: Topological censorship. Phys. Rev. Lett. 71, 1486 (1995)arXiv:gr-qc/9305017, [Erratum: Phys. Rev. Lett.75,1872(1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Galloway G.J., Schoen R.: A Generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571 (2006) arXiv:gr-qc/0509107 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hollands S., Ishibashi A., Wald R.M.: A Higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271, 699 (2007) arXiv:gr-qc/0605106 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gibbons G.W., Ida D., Shiromizu T.: Uniqueness and nonuniqueness of static vacuum black holes in higher dimensions. Prog. Theor. Phys. Suppl. 148, 284 (2003) arXiv:gr-qc/0203004 ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Gibbons G.W., Ida D., Shiromizu T.: Uniqueness of (dilatonic) charged black holes and black p-branes in higher dimensions. Phys. Rev. D 66, 044010 (2002) arXiv:hep-th/0206136 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Gibbons G.W., Ida D., Shiromizu T.: Uniqueness and nonuniqueness of static black holes in higher dimensions. Phys. Rev. Lett. 89, 041101 (2002) arXiv:hep-th/0206049 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kunduri,H.K., Lucietti, J.:No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory. arXiv:1712.02668 (2017)
  18. 18.
    Emparan R., Reall H.S.: Generalized Weyl solutions. Phys. Rev. D 65, 084025 (2002) arXiv:hep-th/0110258 ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Harmark T.: Stationary and axisymmetric solutions of higher-dimensional general relativity. Phys. Rev. D 70, 124002 (2004) arXiv:hep-th/0408141 ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Hollands S., Yazadjiev S.: Uniqueness theorem for 5-dimensional black holes with two axial Killing fields. Commun. Math. Phys. 283, 749 (2008) arXiv:0707.2775 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hollands S., Yazadjiev S.: A Uniqueness theorem for stationary Kaluza–Klein black holes. Commun. Math. Phys. 302, 631 (2011) arXiv:0812.3036 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hollands S., Yazadjiev S.: A Uniqueness theorem for 5-dimensional Einstein–Maxwell black holes. Class. Quant. Grav. 25, 095010 (2008) arXiv:0711.1722 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tomizawa S., Yasui Y., Ishibashi A.: Uniqueness theorem for charged dipole rings in five-dimensional minimal supergravity. Phys. Rev. D 81, 084037 (2010) arXiv:0911.4309 ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Armas J., Harmark T.: Uniqueness theorem for black hole space-times with multiple disconnected horizons. JHEP 05, 093 (2010) arXiv:0911.4654 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yazadjiev S.: Uniqueness and nonuniqueness of the stationary black holes in 5D Einstein–Maxwell and Einstein–Maxwell-dilaton gravity. JHEP 06, 083 (2011) arXiv:1104.0378 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Armas J.: Uniqueness of black holes with bubbles in minimal supergravity. Class. Quant. Grav. 32, 045001 (2015) arXiv:1408.4567 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yazadjiev S.S., Nedkova P.G.: Magnetized configurations with black holes and Kaluza–Klein bubbles: Smarr-like relations and first law. Phys. Rev. D 80, 024005 (2009) arXiv:0904.3605 ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Yazadjiev S.S.: A Uniqueness theorem for black holes with Kaluza–Klein asymptotic in 5D Einstein– Maxwell gravity. Phys. Rev. D 82, 024015 (2010) arXiv:1002.3954 ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Haas, P.A.:Mass formula of a five-dimensional almost-BPS supergravity soliton with a magnetic "Bolt". arXiv:1511.02005 (2015)
  30. 30.
    Haas, P.: Topological sources of soliton mass and supersymmetry breaking. Class. Quantum Grav. 35 arXiv:1705.03992 (2017)
  31. 31.
    Khuri,M.,Weinstein, G., Yamada, S.: Stationary vacuum black holes in 5 dimensions. arXiv:1711.05229 (2017)
  32. 32.
    Reall H.S.: Higher dimensional black holes and supersymmetry. Phys. Rev. D 68, 024024 (2004) arXiv:hep-th/0408141 [Erratum: Phys. Rev.D70,089902] (2003)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Gutowski J.B.: Uniqueness of five-dimensional supersymmetric black holes. JHEP 08, 049 (2004) arXiv:hep-th/0404079 ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Breckenridge J.C., Myers R.C., Peet A.W., Vafa C.: D-branes and spinning black holes. Phys. Lett. B 391, 93 (1997) arXiv:hep-th/9602065 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Chrusciel P.T., Reall H.S., Tod P.: On Israel–Wilson–Perjes black holes. Class. Quant. Grav. 23, 2519 (2006) arXiv:gr-qc/0512116 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Gauntlett J.P., Gutowski J.B., Hull C.M., Pakis S., Reall H.S.: All super symmetric solutions of minimal supergravity in five-dimensions. Class. Quant. Grav. 20, 4587 (2003) arXiv:hep-th/0209114 ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Elvang H., Emparan R., Mateos D., Reall H.S.: A supersymmetric black ring. Phys. Rev. Lett. 93, 211302 (2004) arXiv:hep-th/0407065 ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Gauntlett J.P., Gutowski J.B.: Concentric black rings. Phys. Rev. D 71, 025013 (2005) arXiv:hep-th/0408010 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Bena I., Warner N.P.: Bubbling supertubes and foaming black holes. Phys. Rev. D 74, 066001 (2006) arXiv:hep-th/0505166 ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Berglund P., Gimon E.G., Levi T.S.: Supergravity microstates for BPS black holes and black rings. JHEP 06, 007 (2006) arXiv:hep-th/0505167 ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Chrusciel P.T.: On higher dimensional black holes with abelian isometry group. J. Math. Phys. 50, 052501 (2009) arXiv:0812.3424 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Niehoff B.E., Reall H.S.: Evanescent ergosurfaces and ambipolar hyperkähler metrics. JHEP 04, 130 (2016) arXiv:1601.01898 ADSzbMATHGoogle Scholar
  43. 43.
    Gibbons G.W., Ruback P.J.: The hidden symmetries of multicenter metrics. Commun. Math.Phys. 115, 267 (1988)ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Tomizawa S., Yasui Y., Ishibashi A.: Uniqueness theorem for charged rotating black holes in five dimensional minimal supergravity. Phys. Rev. D 79, 124023 (2009) arXiv:0901.4724 ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Figueras P., Lucietti J.: On the uniqueness of extremal vacuum black holes. Class. Quant. Grav. 27, 095001 (2010) arXiv:0906.5565 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Kunduri H.K., Lucietti J.: Classification of near-horizon geometries of extremal black holes. Living Rev. Rel. 16, 8 (2013) arXiv:1306.2517 CrossRefzbMATHGoogle Scholar
  47. 47.
    Chrusciel P.T., Nguyen L.: A uniqueness theorem for degenerate Kerr–Newman black holes. Annales Henri Poincare 11, 585 (2010) arXiv:1002.1737 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Crichigno P.M., Porri F., Vandoren S.: Bound states of spinning black holes in five dimensions. JHEP 05, 101 (2017) arXiv:1603.09729 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Tomizawa S., Okuda T.: Asymptotically flat multiblack lenses. Phys. Rev. D 95, 064021 (2017) arXiv:1701.06402 ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Gauntlett J.P., Myers R.C., Townsend P.K.: Black holes of D = 5 supergravity. Class. Quant. Grav. 16, 1 (1999) arXiv:hep-th/9810204 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Dunajski M., Hartnoll S.A.: Einstein–Maxwell gravitational instantons and five dimensional solitonic strings. Class. Quant. Grav. 24, 1841 (2007) arXiv:hep-th/0610261 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Avila, J., Ramirez, P.F., Ruiperez, A.: One thousand and one bubbles. arXiv:1709.03985 (2017)

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Mathematics and Maxwell Institute of Mathematical SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations