Communications in Mathematical Physics

, Volume 356, Issue 2, pp 427–449 | Cite as

Parallel Transport Along Seifert Manifolds and Fractional Monodromy

  • N. MartynchukEmail author
  • K. Efstathiou
Open Access


The notion of fractional monodromy was introduced by Nekhoroshev, Sadovskií and Zhilinskií as a generalization of standard (‘integer’) monodromy in the sense of Duistermaat from torus bundles to singular torus fibrations. In the present paper we prove a general result that allows one to compute fractional monodromy in various integrable Hamiltonian systems. In particular, we show that the non-triviality of fractional monodromy in 2 degrees of freedom systems with a Hamiltonian circle action is related only to the fixed points of the circle action. Our approach is based on the study of a specific notion of parallel transport along Seifert manifolds.


  1. 1.
    Arnol’d V.I., Avez A.: Ergodic Problems of Classical Mechanics. W.A. Benjamin Inc., Reading, MA (1968)zbMATHGoogle Scholar
  2. 2.
    Audin M.: Torus Actions on Symplectic Manifolds. Birkhäuser, Basel (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bates L.M.: Monodromy in the champagne bottle. J. Appl. Math. Phys. (ZAMP) 42(6), 837–847 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bates L.M., Zou M.: Degeneration of Hamiltonian monodromy cycles. Nonlinearity 6(2), 313–335 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bochner S.: Compact groups of differentiable transformations. Ann. Math. 46(3), 372–381 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bolsinov A.V., Izosimov A.M., Konyaev A.Y., Oshemkov A.A.: Algebra and topology of integrable systems. Research problems. Trudy Sem. Vektor. Tenzor. Anal. 28, 119–191 (2012) (in Russian)Google Scholar
  7. 7.
    Bolsinov A.V., Fomenko A.T.: Integrable Hamiltonian Systems: Geometry, Topology, Classification. CRC Press, Boca Raton, FL (2004)zbMATHGoogle Scholar
  8. 8.
    Broer H.W., Efstathiou K., Lukina O.V.: A geometric fractional monodromy theorem. Discrete Contin. Dyn. Syst. 3(4), 517–532 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cushman R.H., Bates L.M.: Global Aspects of Classical Integrable Systems. Birkhäuser, Basel (2015)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cushman, R.H., Knörrer, H.: The energy momentum mapping of the Lagrange top. In: Differential Geometric Methods in Mathematical Physics, Lecture Notes in Mathematics, vol. 1139, pp. 12–24. Springer (1985)Google Scholar
  11. 11.
    Cushman R.H., Sadovskií D.A.: Monodromy in the hydrogen atom in crossed fields. Phys. D Nonlinear Phenom. 142(1-2), 166–196 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Duistermaat J.J.: On global action-angle coordinates. Commun. Pure Appl. Math. 33(6), 687–706 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Duistermaat J.J.: The monodromy in the Hamiltonian Hopf bifurcation. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 49(1), 156 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Efstathiou K.: Metamorphoses of Hamiltonian Systems with Symmetries. Springer, Berlin (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Efstathiou K., Broer H.W.: Uncovering fractional monodromy. Commun. Math. Phys. 324(2), 549–588 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Efstathiou K., Cushman R.H., Sadovski D.A.: Fractional monodromy in the 1:2 resonance. Adv. Math. 209(1), 241–273 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Efstathiou, K., Martynchuk, N.: Monodromy of Hamiltonian systems with complexity-1 torus actions. Geom. Phys. 115, 104–115 (2016)Google Scholar
  18. 18.
    Fomenko A.T., Matveev S.V.: Algorithmic and Computer Methods for Three-Manifolds. Springer, Dordrecht (1997)CrossRefzbMATHGoogle Scholar
  19. 19.
    Fomenko A.T., Zieschang H.: Topological invariant and a criterion for equivalence of integrable Hamiltonian systems with two degrees of freedom. Izv. Akad. Nauk SSSR Ser. Mat. 54(3), 546–575 (1990) (Russian)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Giacobbe A.: Fractional monodromy: parallel transport of homology cycles. Differ. Geom. Appl. 26, 140–150 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hatcher, A.: Notes on basic 3-manifold topology. Available online (2000)Google Scholar
  22. 22.
    Jankins, M., Neumann, W.D.: Lectures on Seifert manifolds. Brandeis Lecture Notes, Brandeis University (1983)Google Scholar
  23. 23.
    Lerman L.M., Umanskiĭ Y.L.: Classification of four-dimensional integrable Hamiltonian systems and Poisson actions of \({\mathbb{R}^2}\) in extended neighborhoods of simple singular points. I. Russ. Acad. Sci. Sb. Math. 77(2), 511–542 (1994)MathSciNetGoogle Scholar
  24. 24.
    Lukina O.V., Takens F., Broer H.W.: Global properties of integrable Hamiltonian systems. Regul. Chaotic Dyn. 13(6), 602–644 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Matveev V.S.: Integrable Hamiltonian system with two degrees of freedom. the topological structure of saturated neighbourhoods of points of focus–focus and saddle–saddle type. Sb. Math. 187(4), 495–524 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nekhoroshev N.N.: Action-angle variables, and their generalizations. Trans. Moscow Math. Soc. 26, 181–198 (1972)MathSciNetGoogle Scholar
  27. 27.
    Nekhoroshev N.N.: Fractional monodromy in the case of arbitrary resonances. Sb. Math. 198(3), 383–424 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Nekhoroshev N.N., Sadovskií D.A., Zhilinskií B.I.: Fractional Hamiltonian monodromy. Ann. Henri Poincaré 7, 1099–1211 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sadovskií D.A., Zhilinskií B.I.: Monodromy, diabolic points, and angular momentum coupling. Phys. Lett. A 256(4), 235–244 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Schmidt S., Dullin H.R.: Dynamics near the p:−q resonance. Phys. D Nonlinear Phenom. 239(19), 1884–1891 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sugny, D., Mardešić, P., Pelletier, M., Jebrane, A. Jauslin H.R.: Fractional Hamiltonian monodromy from a Gauss–Manin monodromy. J. Math. Phys. 49(4), 042701 (2008)Google Scholar
  32. 32.
    Tonkonog D.I.: A simple proof of the geometric fractional monodromy theorem. Moscow Univ. Math. Bull. 68(2), 118–121 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Waalkens H., Dullin H.R., Richter P.H.: The problem of two fixed centers: bifurcations, actions, monodromy. Phys. D Nonlinear Phenom. 196(3-4), 265–310 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Waalkens H., Junge A., Dullin H.R.: Quantum monodromy in the two-centre problem. J. Phys. A Math. Gen. 36(20), L307 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zung N.T.: A note on focus–focus singularities. Differ. Geom. Appl. 7(2), 123–130 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations