Skip to main content
Log in

Uncovering Fractional Monodromy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The uncovering of the role of monodromy in integrable Hamiltonian fibrations has been one of the major advances in the study of integrable Hamiltonian systems in the past few decades: on one hand monodromy turned out to be the most fundamental obstruction to the existence of global action-angle coordinates while, on the other hand, it provided the correct classical analogue for the interpretation of the structure of quantum joint spectra. Fractional monodromy is a generalization of the concept of monodromy: instead of restricting our attention to the toric part of the fibration we extend our scope to also consider singular fibres. In this paper we analyze fractional monodromy for n 1:(−n 2) resonant Hamiltonian systems with n 1, n 2 coprime natural numbers. We consider, in particular, systems that for n 1, n 2 > 1 contain one-parameter families of singular fibres which are ‘curled tori’. We simplify the geometry of the fibration by passing to an appropriate branched covering. In the branched covering the curled tori and their neighborhood become untwisted thus simplifying the geometry of the fibration: we essentially obtain the same type of generalized monodromy independently of n 1, n 2. Fractional monodromy is then recovered by pushing the results obtained in the branched covering back to the original system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V.I.: Mathematical methods of classical mechanics. Volume 60 of Graduate Texts in Mathematics. New York: Springer-Verlag, 2nd edition, 1989, translated by K. Vogtmann and A. Weinstein

  2. Arnol’d, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. New York: W.A. Benjamin, Inc., 1968

  3. Bolsinov, A.V., Fomenko, A.T.: Integrable Hamiltonian systems : geometry, topology, classification. Boca Raton, FL: Chapman & Hall/CRC, 2004

  4. Braaksma B.L.J., Broer H.W., Huitema G.B.: Toward a quasi-periodic bifurcation theory. Mem. AMS 83(421), 83–175 (1990)

    MathSciNet  Google Scholar 

  5. Broer H.W., Efstathiou K., Lukina O.V.: A geometric fractional monodromy theorem. Discrete and Continuous Dynamical Systems - Series S (DCDS-S) 3(4), 517–532 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Broer H.W., Hanßmann H., Jorba À., Villanueva J., Wagener F.: Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach. Nonlinearity 16(5), 1751–1791 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Broer H.W., Huitema G.B., Takens F.: Unfoldings of quasi-periodic tori. Mem. AMS 83(421), 1–82 (1990)

    MathSciNet  Google Scholar 

  8. Broer H.W., Vegter G.: Bifurcational aspects of parametric resonance. Dynamics Reported, New Series 1, 1–51 (1992)

    Article  MathSciNet  Google Scholar 

  9. Broer H.W., Vegter G.: Generic Hopf–Neĭmark–Sacker bifurcations in feed-forward systems. Nonlinearity 21(7), 1547–1578 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Colin de Verdière Y., Vũ Ngọc S.: Singular Bohr-Sommerfeld rules for 2D integrable systems. Ann. Sci. Éc. Norm. Sup. 36, 1–55 (2003)

    MATH  Google Scholar 

  11. Cushman R.H., Bates L.: Global aspects of classical integrable systems. Basel-Boston, Birkhäuser (1997)

    Book  MATH  Google Scholar 

  12. Cushman R.H., Dullin H., Hanßmann H., Schmidt S.: The 1:±2 resonance. Regular and Chaotic Dynamics 12(6), 642–663 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Cushman, R.H., Knörrer, H.: The energy momentum mapping of the Lagrange top. In: Differential Geometric Methods in Mathematical Physics, Volume 1139 of Lecture Notes in Mathematics, Berlin-Heidelberg-New York: Springer, 1985, pp. 12–24

  14. Cushman R.H., Sadovskií D.A.: Monodromy in the hydrogen atom in crossed fields. Physica D 142, 166–196 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Davison C.M., Dullin H.R., Bolsinov A.V.: Geodesics on the ellipsoid and monodromy. J. Geom. Phys. 57, 2437–2454 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Duistermaat J.J.: On global action-angle coordinates. Comm. Pure Appl. Math. 33, 687–706 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dullin H., Giacobbe A., Cushman R.H.: Monodromy in the resonant swing spring. Physica D 190, 15–37 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Efstathiou, K.: Metamorphoses of Hamiltonian systems with symmetries. Volume 1864 of Lecture Notes in Mathematics. Berlin-Heidelberg-New York: Springer-Verlag, 2005

  19. Efstathiou K., Cushman R.H., Sadovskií D.A.: Fractional monodromy in the 1:−2 resonance. Adv. Math. 209, 241–273 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Efstathiou K., Giacobbe A.: The topology associated to cusp singular points. Nonlinearity 25(12), 3409–3422 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Efstathiou K., Sugny D.: Integrable Hamiltonian systems with swallowtails. J. Phys. A: Math. Theor. 43, 085216 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  22. Giacobbe A.: Fractional monodromy: parallel transport of homology cycles. Diff. Geom. and Appl. 26, 140–150 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Giacobbe A., Cushman R.H., Sadovskií D.A., Zhilinskií B.I.: Monodromy of the quantum 1:1:2 resonant swing spring. J. Math. Phys. 45, 5076–5100 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Hatcher, A.: Notes on basic 3-manifold topology. Available online at http://www.math.cornell.edu/~hatcher/3M/3Mfds.pdf, 2000

  25. Hatcher A.: Algebraic topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  26. Lukina O.V., Takens F., Broer H.W.: Global properties of integrable Hamiltonian systems. Reg. Chaotic Dyn. 13, 602–644 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Nekhoroshev N.N.: Fractional monodromy in the case of arbitrary resonances. Sbornik : Math. 198, 383–424 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Nekhoroshev N.N.: Fuzzy fractional monodromy and the section-hyperboloid. Milan J. Math. 76, 1–14 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nekhoroshev N.N., Sadovskií D.A., Zhilinskií B.I.: Fractional monodromy of resonant classical and quantum oscillators. Comptes Rendus Math. 335(11), 985–988 (2002)

    Article  MATH  Google Scholar 

  30. Nekhoroshev N.N., Sadovskií D.A., Zhilinskií B.I.: Fractional Hamiltonian monodromy. Ann. H. Poincaré 7, 1099–1211 (2006)

    Article  MATH  Google Scholar 

  31. Schmidt S., Dullin H.R.: Dynamics near the p : q resonance. Physica D 239(19), 1884–1891 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Sugny, D., Mardešić, P., Pelletier, M., Jebrane, A., Jauslin, H.R.: Fractional Hamiltonian monodromy from a Gauss-Manin monodromy. J. Math. Phys. 49, 042701–35 (2008)

    Google Scholar 

  33. Vũ Ngọc S.: Quantum monodromy in integrable systems. Commun. Math. Phys. 203(2), 465–479 (1999)

    Article  ADS  Google Scholar 

  34. Waalkens H., Dullin H.R.: Quantum monodromy in prolate ellipsoidal billiards. Ann. Phys. 295, 81–112 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Waalkens H., Junge A., Dullin H.R.: Quantum monodromy in the two-centre problem. J. Phys. A 36, L307–L314 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Zung N.T.: A note on focus-focus singularities. Diff. Geom. Appl. 7, 123–130 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tien Zung N.: Symplectic topology of integrable Hamiltonian systems, I: Arnold-Liouville with singularities. Comp. Math. 101, 179–215 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Efstathiou.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efstathiou, K., Broer, H.W. Uncovering Fractional Monodromy. Commun. Math. Phys. 324, 549–588 (2013). https://doi.org/10.1007/s00220-013-1816-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1816-9

Keywords

Navigation