Communications in Mathematical Physics

, Volume 352, Issue 1, pp 37–58 | Cite as

Multivariate Trace Inequalities

Open Access
Article

Abstract

We prove several trace inequalities that extend the Golden–Thompson and the Araki–Lieb–Thirring inequality to arbitrarily many matrices. In particular, we strengthen Lieb’s triple matrix inequality. As an example application of our four matrix extension of the Golden–Thompson inequality, we prove remainder terms for the monotonicity of the quantum relative entropy and strong sub-additivity of the von Neumann entropy in terms of recoverability. We find the first explicit remainder terms that are tight in the commutative case. Our proofs rely on complex interpolation theory as well as asymptotic spectral pinching, providing a transparent approach to treat generic multivariate trace inequalities.

References

  1. 1.
    Ahlswede R., Winter A.: Strong converse for identification via quantum channels. IEEE Trans. Inf. Theory 48(3), 569–579 (2002). doi:10.1109/18.985947 MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ando T., Hiai F.: Log majorization and complementary Golden–Thompson type inequalities. Linear Algebra Appl. 197, 113–131 (1994). doi:10.1016/0024-3795(94)90484-7 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Araki H.: Golden–Thompson and Peierls–Bogolubov inequalities for a general von Neumann algebra. Commun. Math. Phys. 34(3), 167–178 (1973). doi:10.1007/BF01645678 ADSMathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Araki H.: On an inequality of Lieb and Thirring. Lett. Math. Phys. 19(2), 167–170 (1990). doi:10.1007/BF01045887 ADSMathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aubrun G., Nechita I.: The multiplicative property characterizes \(\ell_p\)and L p norms. Conflu. Math. 03(04), 637–647 (2011). doi:10.1142/S1793744211000485 MATHCrossRefGoogle Scholar
  6. 6.
    Beigi, S.: Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 54(12) (2013). doi:10.1063/1.4838855
  7. 7.
    Berta, M., Fawzi, O., Tomamichel, M.: On variational expressions for quantum relative entropies (2015). arXiv:1512.02615
  8. 8.
    Berta M., Lemm M., Wilde M.M.: Monotonicity of quantum relative entropy and recoverability. Quantum Inf. Comput. 15(15), 1333–1354 (2015)MathSciNetGoogle Scholar
  9. 9.
    Berta M., Tomamichel M.: The fidelity of recovery is multiplicative. IEEE Trans. Inf. Theory 62(4), 1758–1763 (2016). doi:10.1109/TIT.2016.2527683 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bhatia, R.: Matrix Analysis. Springer, Berlin (1997). doi:10.1007/978-1-4612-0653-8
  11. 11.
    Brandão F.G.S.L., Harrow A.W., Oppenheim J., Strelchuk S.: Quantum conditional mutual information, reconstructed states, and state redistribution. Phys. Rev. Lett. 115(5), 050501 (2015). doi:10.1103/PhysRevLett.115.050501 ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Breitenecker M., Grümm H.R.: Note on trace inequalities. Commun. Math. Phys. 26(4), 276–279 (1972). doi:10.1007/BF01645522 ADSMathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Carlen, E.: Trace Inequalities and Quantum Entropy: An Introductory Course. Contemporary Mathematics (2009). doi:10.1090/conm/529
  14. 14.
    Carlen E., Lieb E.: Remainder terms for some quantum entropy inequalities. J. Math. Phys. 55(4), 042201 (2014). doi:10.1063/1.4871575 ADSMathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Csiszár I.: The method of types. IEEE Trans. Inf. Theory 44(6), 2505–2523 (1998). doi:10.1109/18.720546 MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Donald M.J.: On the relative entropy. Commun. Math. Phys. 105(1), 13–34 (1986). doi:10.1007/BF01212339 ADSMathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Dupuis, F.: Chain rules for quantum Rényi entropies. J. Math. Phys. 56(2) (2015). doi:10.1063/1.4907981
  18. 18.
    Dupuis F., Wilde M.M.: Swiveled Rényi entropies. Quantum Inf. Process. 15(3), 1309–1345 (2016). doi:10.1007/s11128-015-1211-x ADSMathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Eggleston, H.: Convexity. Cambridge University Press, Cambridge (1958). doi:10.1017/CBO9780511566172
  20. 20.
    Epstein H.: Remarks on two theorems of E. Lieb. Commun. Math. Phys. 31(4), 317–325 (1973). doi:10.1007/BF01646492 ADSMathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Fawzi O., Renner R.: Quantum conditional mutual information and approximate Markov chains. Commun. Math. Phys. 340(2), 575–611 (2015). doi:10.1007/s00220-015-2466-x ADSMathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Fuchs, C.A.: Distinguishability and accessible information in quantum theory. PhD Thesis, University of New Mexico (1996). arXiv:quant-ph/9601020
  23. 23.
    Golden S.: Lower bounds for the Helmholtz function. Phys. Rev. 137, B1127–B1128 (1965). doi:10.1103/PhysRev.137.B1127 ADSMathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Grafakos, L. Classical Fourier Analysis, 2nd edn. Springer, Berlin (2008). doi:10.1007/978-0-387-09432-8
  25. 25.
    Hansen F.: Multivariate extensions of the Golden–Thompson inequality. Ann. Funct. Anal. 6(4), 301–310 (2015). doi:10.15352/afa/06-4-301 MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Hansen F., Kjærgård Pedersen G.: Jensen’s inequality for operators and Löwner’s theorem. Math. Ann. 258(3), 229–241 (1982). doi:10.1007/BF01450679 MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Hansen F., Pedersen G.K.: Jensen’s operator inequality. Bull. Lond. Math. Soc. 35(4), 553–564 (2003). doi:10.1112/S0024609303002200 MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Hayashi M.: Optimal sequence of quantum measurements in the sense of Stein’s lemma in quantum hypothesis testing. J. Phys. A Math. Gen. 35(50), 10759 (2002). doi:10.1088/0305-4470/35/50/307 ADSMathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Hayashi, M. Quantum Information An Introduction. Springer. Berlin (2006). doi:10.1007/3-540-30266-2
  30. 30.
    Hiai F., Mosonyi M., Petz D., Bény C.: Quantum f-divergences and error correction. Rev. Math. Phys. 23(07), 691–747 (2011). doi:10.1142/S0129055X11004412 MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Hiai F., Petz D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143(1), 99–114 (1991). doi:10.1007/BF02100287 ADSMathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Hiai F., Petz D.: The Golden–Thompson trace inequality is complemented. Linear Algebra Appl. 181, 153–185 (1993). doi:10.1016/0024-3795(93)90029-N MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Hirschman I.I.: A convexity theorem for certain groups of transformations. J. Anal. Math. 2(2), 209–218 (1952). doi:10.1007/BF02825637 MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Joachim, W. Linear Operators in Hilbert Spaces. Springer, Berlin (1980). doi:10.1007/978-1-4612-6027-1
  35. 35.
    Junge, M., Renner, R., Sutter, D., Wilde, M.M., Winter, A.: Universal recovery from a decrease of quantum relative entropy (2015). arXiv:1509.07127
  36. 36.
    Kittaneh F.: Norm inequalities for certain operator sums. J. Funct. Anal. 143(2), 337–348 (1997). doi:10.1006/jfan.1996.2957 MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Klein O.: Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre. Zeitschr. Phys. 72(11), 767–775 (1931). doi:10.1007/BF01341997 ADSMATHCrossRefGoogle Scholar
  38. 38.
    Klimek S., Lesniewski A.: A Golden–Thompson inequality in supersymmetric quantum mechanics. Lett. Math. Phys. 21(3), 237–244 (1991). doi:10.1007/BF00420374 ADSMathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Kosaki H.: An inequality of Araki–Lieb–Thirring (von Neumann algebra case). Proc. Am. Math. Soc. 114, 477–481 (1992). doi:10.2307/2159671 MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Kullback S., Leibler R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951). doi:10.1214/aoms/1177729694 MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Lenard A.: Generalization of the Golden–Thompson inequality. Indiana Univ. Math. J. 21, 457–467 (1971). doi:10.1512/iumj.1971.21.21036 ADSMathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Li H., Zhao D.: An extension of the Golden–Thompson theorem. J. Inequal. Appl. 2014(1), 1–6 (2014). doi:10.1186/1029-242X-2014-14 MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Lieb, E., Thirring, W.: Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and Their Relation to Sobolev Inequalities, in Studies in Mathematical Physics. Princeton University Press, pp. 296–303 (1976). doi:10.1007/3-540-27056-6_16
  44. 44.
    Lieb E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11(3), 267–288 (1973). doi:10.1016/0001-8708(73)90011-X MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Lieb E.H., Ruskai M.B.: A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 30, 434–436 (1973). doi:10.1103/PhysRevLett.30.434 ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Lieb E.H., Ruskai M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14(12), 1938–1941 (1973). doi:10.1063/1.1666274 ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Lindblad G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40(2), 147–151 (1975). doi:10.1007/BF01609396 ADSMathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Majenz, C.: Private communication (2016)Google Scholar
  49. 49.
    Müller-Hermes, A., Reeb, D.: Monotonicity of the quantum relative entropy under positive maps (2015). arXiv:1512.06117
  50. 50.
    Müller-Hermes, A., Reeb, D., Wolf, M.M.: Positivity of linear maps under tensor powers. J. Math. Phys. 57(1) (2016). doi:10.1063/1.4927070
  51. 51.
    Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12) (2013). doi:10.1063/1.4838856
  52. 52.
    Petz D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105(1), 123–131 (1986). doi:10.1007/BF01212345 ADSMathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Petz D.: A variational expression for the relative entropy. Commun. Math. Phys. 114(2), 345–349 (1988). doi:10.1007/BF01225040 ADSMathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Petz, D. Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008). doi:10.1007/978-3-540-74636-2
  55. 55.
    Reed M., Simon B.: Functional Analysis. Elsevier, Academic Press, New York (1980)MATHGoogle Scholar
  56. 56.
    Ruelle, D. Statistical Mechanics: Rigorous Results. World Scientific Publishing Company, Singapore (1999). doi:10.1142/4090
  57. 57.
    Ruskai M.B.: Inequalities for traces on von Neumann algebras. Commun. Math. Phys. 26(4), 280–289 (1972). doi:10.1007/BF01645523 ADSMathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Segal I.: Notes towards the construction of nonlinear relativistic quantum fields III. Bull. Am. Math. Soc. 75, 1390–1395 (1969). doi:10.1090/S0002-9904-1969-12428-6 MATHCrossRefGoogle Scholar
  59. 59.
    Simon B.: Trace Ideals and Their Applications. Cambridge University Press, Cambridge (1979). doi:10.1090/surv/120
  60. 60.
    Stein E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83(2), 482–492 (1956). doi:10.2307/1992885 MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Stinespring, W.F.: Positive functions on C*-algebras. Proc. Am. Math. Soc. 6(211), 211–216 (1955). doi:10.1090/S0002-9939-1955-0069403-4
  62. 62.
    Sutter, D., Fawzi, O., Renner, R.: Universal recovery map for approximate Markov chains. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472(2186) (2016). doi:10.1098/rspa.2015.0623
  63. 63.
    Sutter D., Tomamichel M., Harrow A.W.: Strengthened monotonicity of relative entropy via pinched petz recovery map. IEEE Trans. Inf. Theory 62(5), 2907–2913 (2016). doi:10.1109/TIT.2016.2545680 MathSciNetCrossRefGoogle Scholar
  64. 64.
    Thompson C.J.: Inequality with applications in statistical mechanics. J. Math. Phys. 6(11), 1812–1813 (1965). doi:10.1063/1.1704727 ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    Thompson C.J.: Inequalities and partial orders on matrix spaces. Indiana Univ. Math. J. 21, 469–480 (1971). doi:10.1512/iumj.1971.21.21037 MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Tomamichel, M. Quantum Information Processing with Finite Resources, SpringerBriefs in Mathematical Physics, vol. 5. Springer, Berlin (2015). doi:10.1007/978-3-319-21891-5
  67. 67.
    Tropp J.A.: User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12(4), 389–434 (2011). doi:10.1007/s10208-011-9099-z MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Uhlmann A.: Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977). doi:10.1007/BF01609834 ADSMathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Umegaki H.: Conditional expectation in an operator algebra. Kodai Math. Seminar Rep. 14, 59–85 (1962). doi:10.2996/kmj/1138844604 MATHCrossRefGoogle Scholar
  70. 70.
    Wang B.-Y., Zhang F.: Trace and eigenvalue inequalities for ordinary and Hadamard products of positive semidefinite Hermitian matrices. SIAM J. Matrix Anal. Appl. 16(4), 1173–1183 (1995). doi:10.1137/S0895479893253616 MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Wilde M.M.: Recoverability in quantum information theory. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 471(2182), 20150338 (2015). doi:10.1098/rspa.2015.0338 ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland
  2. 2.Institute for Quantum Information and MatterCaltechCaliforniaUSA
  3. 3.School of PhysicsThe University of SydneySydneyAustralia

Personalised recommendations